

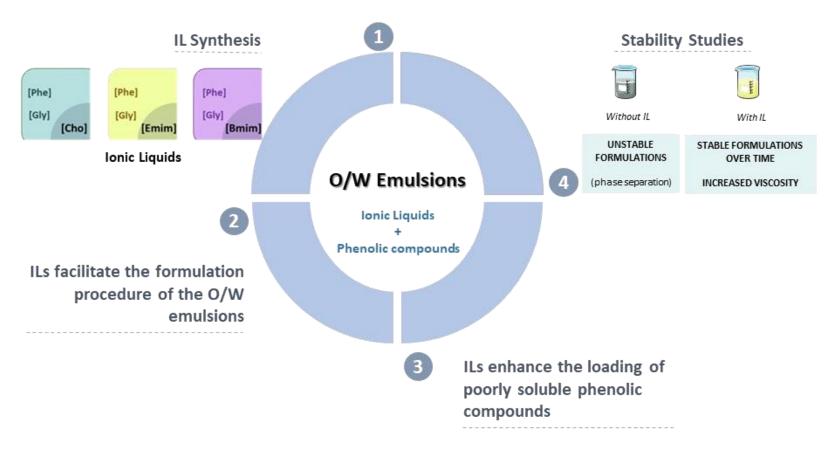
The 7th International Electronic Conference on Medicinal Chemistry (ECMC 2021)

01-30 NOVEMBER 2021 | ONLINE

Ionic liquids as an innovative solution to improve the delivery of phenolic compounds

<u>Ana Júlio</u>^{1,2}, Rita Caparica^{1,2}, Filipe Fernandes³, Maria Eduarda M. Araújo⁴, Tânia Santos de Almeida^{1,4,*}

- ¹ CBIOS-Universidade Lusófona's Research Center for Biosciences & Health Technologies, Lisbon, Portugal
- ² Department of Biomedical Sciences, University of Alcalá, Ctra., Madrid, Spain
- ³ School of Sciences and Health Technologies, Lusófona University, Lisbon, Portugal
- ⁴ Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
- * Corresponding author: tania.almeida@ulusofona.pt



Ionic liquids as an innovative solution to improve the delivery of phenolic compounds

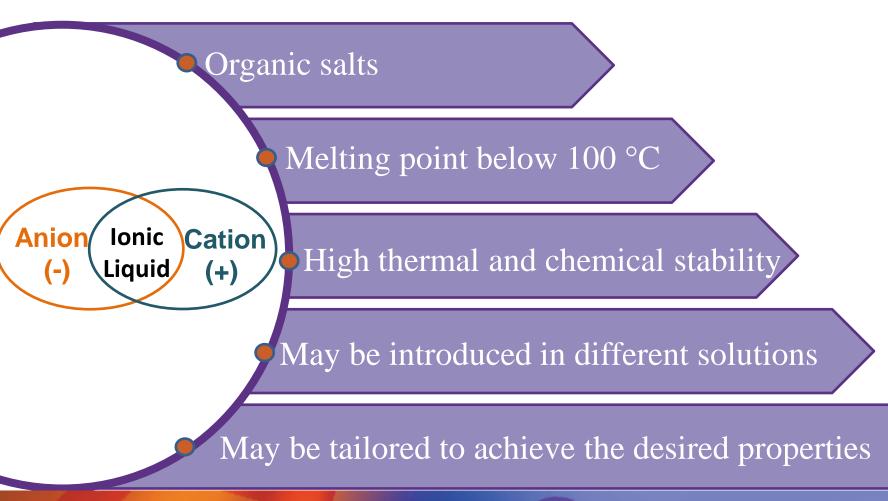
Abstract:

Phenolic compounds, such as ferulic, caffeic and *p*-coumaric acids and rutin, are commonly present in natural resources, for example plants (e.g. eggplant), cereals (e.g. rice), vegetables (e.g. beans) and fruits (e.g. oranges). Several studies have already demonstrated their potential on the pharmaceutical and cosmetic fields, as antioxidant, anti-inflammatory and anticancer. However, these compounds have a low aqueous solubility, restricting their applicability.

Ionic liquids (ILs) can act as multifunctional excipients, namely, to enhance drug solubility and incorporation into various delivery systems.

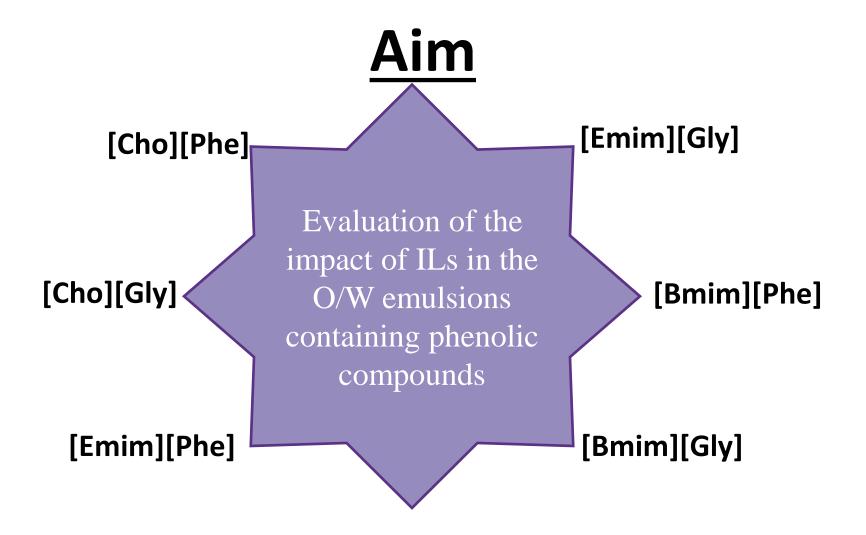
In this work six ILs containing natural amino acids, (2-hydroxyethyl)trimethylammonium phenylalaninate [Cho][Phe], (2-hydroxyethyl)trimethylammonium glycinate [Cho][Gly], 1-ethyl-3-methylimidazolium phenylalaninate [Emim][Phe], 1-ethyl-3-methylimidazolium glycinate [Emim][Gly], 1-butyl-3-methylimidazolium phenylalaninate [Bmim][Phe] and 1-butyl-3-methylimidazolium glycinate [Bmim][Gly], were prepared and their impact on the incorporation of the four phenolic compounds, in O/W emulsions, was evaluated.

The use of ILs allowed the incorporation of higher amounts of the studied drugs, since their solubility was enhanced. They also led to more viscous emulsions, improving the stability of the formulations.


<u>Keywords</u>: ionic liquids; O/W emulsions; phenolic compounds; upgraded formulations.

Phenolic compounds

Present in natural resources


Several applications in the pharmaceutical and cosmetic fields

Ionic Liquids

The 7th International Electronic Conference on Medicinal Chemistry
01–30 NOVEMBER 2021 | ONLINE

Results and Discussion

Table 1: Results from the stability studies of the O/W emulsions prepared in the presence and absence of 0.2% (v/v) of each of the ILs (n = 3). Viscosity values were measured after formulation and following six temperature cycles (at -5 °C and 45 °C).

IL	% IL	After Formulation		Stability Studies			
		Visual Analysis	Viscosity (mPas)	After Centrifugation	After Gradual Heating	Viscosity (mPas) after 6 Temperature Cycles	
Control	-	Stable	5170 ± 90	Unstable	Unstable		
[Cho][Phe]	0.2	Stable	12,700 ± 102			15,400 ± 100	
[Cho][Gly]	0.2	Stable	11,800 ± 52			13,100 ± 105	
[Emim][Phe]	0.2	Stable	10,000 ± 132	- C. 11	Ct 11	12,400 ± 129	
[Emim][Gly]	0.2	Stable	10,400 ± 188	- Stable	Stable	13,100 ± 77	
[Bmim][Phe]	0.2	Stable	9100 ± 80			11,000 ± 85	
[Bmim][Gly]	0.2	Stable	9200 ± 120	-3		11,400 ± 112	

Caparica R., Júlio, A, et al, Int. J. Mol. Sci. 2021.

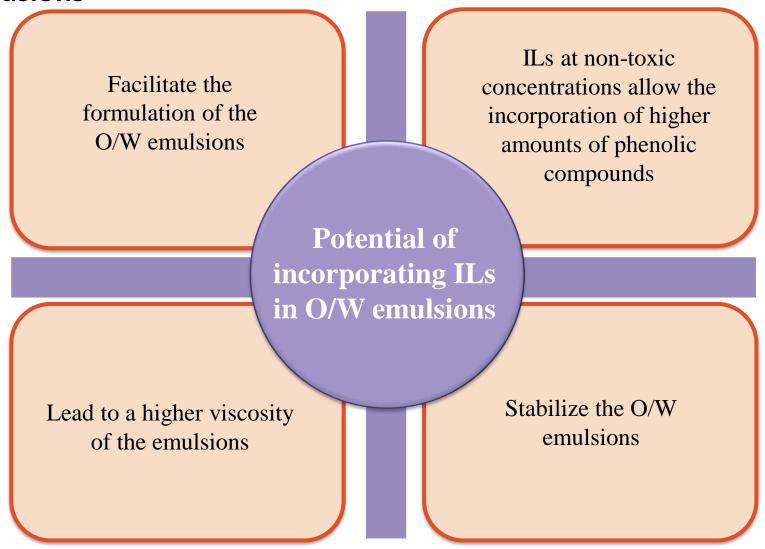
Results and Discussion

Table 2: Results from the stability studies of O/W emulsions the prepared in the presence of each drug individually and in the presence or absence of the glycinate derived ILs (n = 3). Viscosity values were measured after formulation and following six temperature cycles (at -5 °C and 45 °C).

			After Formulation			Stability studies	
Drug	IL	% IL	Visual Analysis	Viscosity (mPas)	After Centrifuge	After Gradual Heating	Viscosity (mPas) after 6 Temperature Cycles
Ferulic Acid	Control 2a	-	Stable	8000 ± 80	Unstable	Unstable	-
	rct1rct1	0.2	Stable	12,000 ± 75		Stable	12,500 ± 100
	[Cho][Gly]	0.5	Stable	13,700 ± 110	C4-1-1-		15,000 ± 90
	[Emim][Gly]	0.2	Stable	11,300 ± 100	Stable		12,000 ± 100
	[Bmim][Gly]	0.2	Stable	10,000 ± 130			12,600 ± 100
	Control 2b	-	Stable	8500 ± 100	Unstable	Unstable	-
Caffeic Acid	[C]1[C]1	0.2	Stable	11,000 ± 95		Stable	12,000 ± 90
	[Cho][Gly]	0.5	Stable	12,000 ± 100	Stable		15,500 ± 95
	[Emim][Gly]	0.2	Stable	11,200 ± 90	Stable		14,100 ± 80
	[Bmim][Gly]	0.2	Stable	11,000 ± 80			14,500 ± 90
	Control 2c	-	Stable	8200 ± 100	Unstable	Unstable	-
	[ChallChr]	0.2	Stable	$12,000 \pm 100$		Stable	$15,500 \pm 100$
<i>p</i> -Coumaric Acid	[Cho][Gly]	0.5	Stable	$13,500 \pm 100$	Stable		17,000 ± 90
Acid	[Emim][Gly]	0.2	Stable	10,300 ± 90	Stable		14,600 ± 100
	[Bmim][Gly]	0.2	Stable	10,200 ± 100			14,000 ± 100
	Control 2d	-	Stable	7500 ± 150	Unstable	Unstable	-
	[ChallChr]	0.2	Stable	12,800 ± 100		Stable	13,100 ± 105
Rutin	[Cho][Gly]	0.5	Stable	13,400 ± 90	Stable		16,000 ± 100
	[Emim][Gly]	0.2	Stable	10,400 ± 188	Stable		13,100 ± 77
	[Bmim][Gly]	0.2	Stable	9220 ± 50			11,140 ± 52

Caparica R., Júlio, A, et al, Int. J. Mol. Sci. 2021.

Results and Discussion


Table 3: Results from the accelerated and shelf-life stability studies of the O/W emulsions prepared in the presence of 0.2% (v/v) of each of the ILs and without the drug, in the presence of each drug individually with and without the glycinate derived ILs (n = 3). Viscosity values were measured after 90 days in an oven $(40 \pm 2 ^{\circ}C)$, in a refrigerator $(5 \pm 2 \, ^{\circ}\text{C})$, or at room temperature.

		% IL	Viscosity after 90 days (mPas)			
	IL		Accelerat	ed Stability	Shelf Test	
Drug			Heating at	Cooling at		
			Oven	Refrigerator	Room temperature	
			$(40 \pm 2 ^{\circ}\text{C})$	(5 ± 2 °C)		
	[Cho][Phe]	0.2	15,500 ± 85	14950 ± 80	16,200 ± 65	
	[Cho][Gly]	0.2	15,220 ± 50	15000 ± 80	16,050 ± 100	
Without Drug	[Emim][Phe]	0.2	12,200 ± 100	11950 ± 50	13,450 ± 70	
	[Emim][Gly]	0.2	$12,450 \pm 100$	12320 ± 100	14,120 ± 90	
	[Bmim][Phe]	0.2	10,300 ± 50	10220 ± 100	11,000 ± 100	
_	[Bmim][Gly]	0.2	10,175 ± 50	10300 ± 70	11,110 ± 50	
		0.2	15,500 ± 100	15,410 ± 50	16,250 ± 100	
Ferulic Acid	[Cho][Gly]	0.5	16,300 ± 50	16,570 ± 110	17,120 ± 120	
	[Emim][Gly]	0.2	12,320 ± 80	12,200 ± 50	14,200 ± 110	
	[Bmim][Gly]	0.2	11,000 ± 50	10,900 ± 50	12,100 ± 100	
Caffeic Acid	101 1101 1	0.2	13,100 ± 50	13,310 ± 80	14,850 ± 50	
	[Cho][Gly]	0.5	13,300 ± 60	13,140 ± 100	15,680 ± 50	
	[Emim][Gly]	0.2	12,520 ± 100	12,600 ± 100	14,200 ± 150	
	[Bmim][Gly]	0.2	12,100 ± 100	11,990 ± 100	14,620 ± 80	
p-Coumaric Acid		0.2	13,250 ± 50	13,500 ± 100	16,000 ± 100	
	[Cho][Gly]	0.5	13,900 ± 50	14,540 ± 100	17,120 ± 150	
	[Emim][Gly]	0.2	11,950 ± 50	12,000 ± 100	14,850 ± 100	
	[Bmim][Gly]	0.2	11,400 ± 50	11,355 ± 100	14,700 ± 100	
Rutin	•	0.2	15,800 ± 50	16,000 ± 100	16,550 ± 120	
	[Cho][Gly]	0.5	16,750 ± 60	17,010 ± 100	18,225 ± 115	
	[Emim][Gly]	0.2	12,450 ± 50	12,800 ± 100	14,780 ± 100	
	[Bmim][Gly]	0.2	11,500 ± 50	11,650 ± 100	12,380 ± 100	

Caparica R., Júlio, A, et al, Int. J. Mol. Sci. 2021.

Conclusions

Funding

UID/DTP/04567/2019 and UIDB/0456/2020 (both general funding to CBIOS)

Grant Programme FIPID 2019/2020

THANK YOU

The 7th International Electronic Conference on Medicinal Chemistry
01–30 NOVEMBER 2021 | ONLINE