

DEVELOPMENT AND OPTIMIZATION OF NANOSTRUCTURED SYSTEMS LOADED WITH AN HIV INHIBITORY PEPTIDE

Instituto de Química

Mayra Fuertes^{* 1.2}, Elena Sánchez-López¹, Marta Espina¹, María Luisa García¹, María José Gómara² and Isabel Haro² ¹ Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Av. Joan XXIII, 27-31, Barcelona 08028, Spain ² Unit of Synthesis and Biomedical Applications of Peptides, Department of Biological Chemistry, IQAC-CSIC, Jordi Girona 18, Barcelona 08034, Spain

INTRODUCTION

Human immunodeficiency virus (HIV) is a public health problem worldwide. According to the WHO, 37.7 million people were infected in 2020 with HIV, 53% being women.¹ The development of peptide microbicides combined with nanotechnological tools might allow to obtain novel strategies to prevent HIV transmission.

Our group has previously reported a 18-mer linear peptide (namely E1P47), with a broad spectrum activity against HIV-1 and encapsulated it into polymeric nanoparticles (NPs).²⁻⁴ In this work, novel PLGA-based mucoadhesive biodegradable NPs were designed to encapsulate E1P47 and enhance its penetration properties through the vaginal mucosa.

MATERIALS AND METHODS

NPs loading E1P47 were prepared by the modified double emulsion method (W/O/W).

The optimal formulation was designed through a factorial design and the NPs were characterized according to their physicochemical characteristics.

Fig.4 NPs preparation method

PROPERTIES OF THE OPTIMIZED FORMULATION					
	Chitosan (%)	Z _{av} (nm)	PI	ZP (mV)	EE (%)
E1P47 loaded NPs	0.038	320.5 ± 1.8	0.271 ± 0.003	47.2 ± 0.3	95.1 ± 0.3
Blank NPS	0.038	331.0 ± 0.5	0.238 ± 0.066	34.9 ± 0.1	-

CONCLUSION

An optimized formulation of NPs loading an anti-HIV-1 peptide has been obtained, with suitable properties in order to provide increased adherence of NPs to

the vaginal mucosa. NPs size is lower than 400 nm, they possess a monomodal distribution, a highly positive ZP and an EE higher than 90%. NPs loading E1P47 would be furtherly studied to confirm their microbicide properties.

REFERENCES

- 1. ONU/SIDA. Global HIV & AIDS statistics Fact sheet. (2021).
- 2. Gomara MJ, Perez Y, Gomez-Gutierrez P, Herrera C, Ziprin P, Martinez J, Meyerhans A, Perez J, and Haro I, Scientific Reports. 2020 Sep 2;10.
- 3. Ariza-Sáenz M, Espina M, Calpena A, Gómara MJ, Pérez-Pomeda I, Haro I and García ML, Molecular Pharmaceutics. 2018 Nov 5;15(11):5005–18.
- 4. Ariza-Sáenz M, Espina M, Bolaños N, Calpena AC, Gomara MJ, Haro I, García ML, European Journal of Pharmaceutics and Biopharmaceutics. 2017 Nov 1;120:98–106.

