Pharmacophore-based drug design and synthesis of potential CDK2 inhibitors as anticancer entities

Jahara Shaikh (shaikhjahara4@gmail.com) * Kavitkumar Patel (Kavitkumar.Patel@bncp.ac.in) Tabassum Khan (tabassum.khan@bncp.ac.in) ¹ Department of Pharmaceutical Chemistry & Quality Assurance, SVKM'S Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai-56, India

INTRODUCTION

COMPUTATIONAL STUDIES

• Cancer is an irregular cell growth that uncontrollably divides with the potential for invasion or spread to other parts. Genetic or epigenetic modifications in somatic cells may ultimately be cancerous to human cells.

• Cyclin-dependent kinases (CDKs) are essential regulatory enzymes that operate all transitions in the cell cycle and are under strict control to ensure the cell division successfully. Human cells possess 20 CDKs and 29 cyclins. CDKs play a significant role including control of gene transcription, metabolism, and neuronal function.

• Cyclin-dependent Kinases (CDK2) is a Serine/Threonine protein kinase with 298 amino acid residues and a molecular weight of 34 kDa. Cdk2 is a central regulator of the cell cycle, with functions in inactivating RB1 (pRb) tumour suppressor family phosphorylation and regulating transitions between

The 3D structure of CDK2 (PDB ID: 1VYZ) was docked with the 12 synthesized compounds and were compared to a pharmacophore model of 12 known CDK2 inhibitors that are currently in clinical trials to identify potential inhibitor.

• The Auto Dock Tool (Auto dock 1.5.6) was used for molecular docking, and the docked complex compounds were visualized .

Table 1: Binding affinity of synthesized compounds								
th	Compound Code	Binding Affinity (kcal/mol)						
a		-7.3						
ro	1b	-7.5						
le	1c	-7.6						
	1d	-7.2						
	1e	-7.0						
ar	1f	-7.5						
_	1g	-7.2						
ed	3a	-7.1						
	3b	-7.7						

- G1 / S phase.
- Implication of pyrazole scaffold have rendered it an important tool for the innovation of new pharmacological agents in multiple therapeutic classes viz. antimicrobial, anticonvulsant, anticancer, analgesic, anti-inflammatory, anti-tubercular, cardiovascular etc. ATP-competitive inhibitors from different chemical classes of CDK2 pyrazole shows a potency for the further studies to increase the enzyme inhibiting activity by using pyrazole core.

AIM & OBJECTIVES

AIM: The aim of the research project is to synthesize substituted 1-Phenylpyrazole analogues and evaluate them for potential cytotoxic activity.

Objectives:

- 1. To design and optimize molecules as CDK2 inhibitors.
- 2. To synthesize substituted 1-phenylpyrazole analogues.
- 3. To characterize the synthesized compounds using FTIR, NMR, and MS analysis.
- 4. To evaluate the compounds for cytotoxic activity on MCF-7 (breast cancer) cell lines.

EXPERIMENTAL

- and interpreted using Schrodinger (Qikprep).
- The docking interaction of 3d with 1VYZ has the highest binding affinity of -7.6 Kcal/mol. The hydrazide group (NH) of 3d shows H-bond interaction with Asp 145. Thus, 3d can be considered to be a good lead for development of CDK2 inhibitors.

Fig 1: Docked pose of analogue 3d

BIOLOGICAL EVALUATION

- All the synthesized compounds were screened for cytotoxicity activity against breast cancer cell line MCF-7 using MTT assay . The synthesized analogues were found to exhibit good cytotoxicity against MCF-7 cell lines.
- The cytotoxicity assay indicated all compounds to exhibit good activity with 1e and 3d showing the highest % cytotoxicity in MCF-7 cell line.

	Ig		80.75 ± 10.70
		10	
		40ppm	
	3a		57.03 ± 62.18
		/0nnm	
	26	40ppm	61.49 ± 20.27
MCF 7			04.46 ± 20.57
		40ppm	
	3c	11	72.13 ± 23.99
		10000	
	2.1	40ppm	100 24 + 50 50
	30		100.34 ± 58.50
		40ppm	
	30	roppin	87.03 ± 20.63
	50		07.05 ± 20.05
able 3: ADME pred	iction		
unic de l'inflitte pica			

	range	1 a	1b	1c	1d	1e	1f	1g	3 a	3 b	3 c	3d	3 e
Molecular weight	<500	311.70	346.21	325.79	356.76	356.76	329.76	341.79	354.79	372.78	384.82	389.24	433.69
QP log P o/ _W	-2.0 to 6.5	4.39	4.88	4.70	3.68	3.78	4.61	4.49	4.27	4.51	4.36	4.77	4.84
HBA	≤10	3.5	3.5	3.5	4.5	4.5	3.5	4.2	4.5	4.5	5.2	4.5	4.5
HBD	≤5	1	1	1	1	1	1	1	0.5	0.5	0.5	0.5	0.5
CNS	-2 to +2	1	1	1	-2	-1	1	0	0	0	-1	0	0
Human oral Absorption	1-Low 2-Medium 3-High	3	1	1	3	3	3	1	1	1	1	1	1
% Human Oral Absorption	<25% poor; >80% good	100	100	100	94.92	100	100	100	100	100	100	100	100
Rule of Five	0 Best	0	0	0	0	0	0	0	0	0	0	0	0

Synthesized Molecules

RESULTS

- The computational studies indicated that compound 3d with electro-withdrawing chloro group showing good binding activity with the native ligand.
- The % cytotoxicity of 5-chloro-N'-(4-chlorobenzoyl)-3-methyl-1-phenyl-1H-pyrazole-4-carbohydrazide (3d) were found to be highest at concentration of 40 ppm.

CONCLUSION

- The cytotoxicity assay indicated all compounds to exhibit good activity with 3d showing the highest % cytotoxicity in MCF-7 cell line.
- The computational and cytotoxicity data indicated 3d to be the most active and it can be considered as a good lead for development of CDK2 inhibitors as anticancer agents.

REFERENCES

- Bačević K, Lossaint G, Achour TN, Georget V, Fisher D, Dulić V. Cdk2 strengthens the intra-S checkpoint and counteracts cell cycle exit induced by DNA damage. Sci Rep. 2017;7(1):1–14.
- Bennani FE, Doudach L, Karrouchi K, Ansar M, El M, Faouzi A. Overview of recent developments of pyrazole derivatives as an anticancer agent in different cell line. Bioorg Chem [Internet]. 2019;103470.
- Chohan TA, Qian H, Pan Y, Chen J-Z. Cyclin-Dependent Kinase-2 as a Target for Cancer Therapy: Progress in the Development of CDK2 Inhibitors as Anti-Cancer Agents. Curr Med Chem. 2014;22(2):237–63.

The 7th International Electronic Conference on Medicinal Chemistry 01–30 NOVEMBER 2021 | ONLINE