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Abstract.   

Despite improvements in diagnosis and 

chemotherapy, non-small cell lung cancer 

(NSCLC) remains one of the most common 

cancer and has the largest proportion of all cancer 

death rates today. Computational approaches 

have been widely applied for early detection of 

novel treatment for NSCLC. Herein we 

developed a multi-objective approach or the 

screening of chemical compounds 
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 simultaneously active against three NSCLC cell 

lines: A549, NCI-H1299 and NCI-H1975. The 

first step consisted of developing ensemble 

models based on cytotoxicity data against three 

NSCLC cell lines curated from ChEMBL 

database. A desirable-based algorithm was then 

applied to incorporate these models into a multi-

objective optimization system that can be used for 

virtual screening protocol. This system showed 

suitable screening performance with the 

Boltzmann-Enhanced Discrimination of ROC 

BEDROC = 0.62, the Enrichment Factor (EF)1% 

= 30 and the Area Under the Accumulation Curve 

(AUAC) = 0.69 

 

 

Introduction 

With 2.1 million newly diagnosed cases and 1.8 million death in 2018, undoubtedly, lung cancer is the 

most common cancer type and leading cause of cancer death worldwide. 5 year survival rate of lung 

cancer is only 10 – 20% and varies significantly depending on the stage at diagnosis. The disease can be 

induced by many carcinogens including tobacco smoking asbestos, silica, several heavy metals, radon, 

and air pollution. Out of three histologic types of lung cancer, non-small cell lung cancer (NSCLC) 

accounts for majority of cases1.  

By exploitation of several targetable pathways such as EGFR, PI3K/AKT/mTOR, RAS–MAPK, and 

NTRK/ROS1 pathways, targeted therapy has been strongly developed. Some drugs based on this 

strategy are official approved and considered as first line treatment to replace traditional chemotherapy 

including gefitinib and erlotinib which are two first generations of EGFR – TKI (tyrorine kinase inhibitor 

of EGFR) and everolimus inhibiting of PI3K/AKT/mTOR pathway. Moreover, multiple chemical 

compounds and even microRNAs also show positive results in preclinical and clinical trials. Neverthless, 

similar to other pharmacotherapy, the cancer cell has adapted and resisted against these drugs. Although 

combination of different therapy has recommended2, the effectiveness of current approach is still not 

completely raising the need of continuous effort of new anticancer drug.  

On the other hand, multiple subtypes with a wide variety of morphological heterogeneity of lung cancer 

especially in lung adenocarcinoma1 and the resistance of current targeted therapy2 suggest that anticancer 

drug development should focus on multitarget rather than single targeted strategy. Multitarget drug 

development (MTDD) not only elevates the probabilities of interfering desired phenotype or achieving 

the therapeutic effects but also allows to optimize the toxicological profiles as well as bioavailability 

parameters. Furthermore, the complexity of pathological network of cancer cell brings it the ability to 

resist to drug therapy by compensation of signaling loops and makes the attempt of single node 

intervention ineffective3. In that scenario, MTDD by approaching simultaneously multiple nodes could 

be promising to knock down the cancer network and suppress the drug resistance. 

In this study, our aim is to build a virtual model to reveal the small molecules with simultaneous activity 

against three non small cell lung cancer cell lines: NCI-H1299, NCI-H1975, and A549. 
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Materials and Methods 

Dataset 

All molecules for model construction of three cell line activity (NCI-H1299, NCI-H1975, and A549) 

were retrieved from ChEMBL database 4 and IC50 was used as activity indicator with threshold for 

classification of 10 µM. NCI-H1299, NCI-H1975, and A549 dataset have 520, 1131, and 21975 

compounds respectively. Molecules were partitioned into training (70%), testing 1 (15%), and testing 2 

(15%).  

Base models 

2D molecular descriptors were taken from CDK Descriptor Calculator. The number of selected 

descriptors of NCI – H1299, NCI-H1975, and A549 are 43, 46, and 35 respectively. 

For multi-objective screening, firstly we developed base models to generalize the relationship between 

activity and structure for each cell line separately. In each model, we chose randomly 5, 10, and 15 

descriptors, then constructed the model by RF algorithm3. We also defined the borderline for our models 

(applicability domain) by distance based method as per Mahalanobis distance5.  

Ensemble models 

The reliability of prediction from single models could be significantly strengthen by integrating them 

into an ensemble model. In our study, we aggregated the base models by score vote strategy 3,6. Outputs 

of active class of the models were averaged. 

For model selection, we applied genetic algorithm (GA) approach with RF as learning method. The 

number of search iterations was 50 and at each iterations, 2 subsets were evaluated. The crossover and 

mutation probability was respectively 0.7 and 0.3. The performance of GA model was validated by 10 

fold cross validation. 

Desirability score 

In the next step, we transformed the aggregated score to desirability score 3. Desirability value of a 

compound (𝐷 ) is defined as: 

𝐷 =

⎩
⎪
⎨

⎪
⎧

0 if 𝑆 ≤ min(𝑆) 

𝑆 −  min(𝑆)

max(𝑆) − min(𝑆)
if min(𝑆) < 𝑆 <  max(𝑆)  

1 if  𝑆  ≥  max(𝑆) 

(1) 

which 𝑆  is the aggregated score of the new sample. 

As our final objective is to conclude about the simultaneous activity against multiple cell lines, we 
continued aggregating the desirability of each end point into a final value, denoted as 𝐷  by the 

following approach 3: 

𝐷 = 𝐷 , (2) 

Virtual screening of multi objective target 

Molecules with known multi-effect on three cell lines were ranking by their total desirability scores. 

Decoys were generated by DUD-E database (http://dude.docking.org/generate) 7. The efficiency of VS 

pipeline was evaluated by following parameters: Area Under the Accumulation Curve (AUAC), 

Enrichment Factor (EF), and Boltzmann-Enhanced Discrimination of ROC (BEDROC)3. 

Results and Discussion 
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Performance of base models is exhibited in Figure 1. For all cell lines, ROC of two testing sets was 

comparable except for the significantly lower ROC of testing set 2 of NCI-H1299. ROC of training 

dataset is higher than that of two testing datasets for NCI-H1299 and A549 but for NCI-H1975, two 

testing sets have better ROC values but the difference is not so high. Also, almost all models show good 

predictive power with ROC of higher than 0.65. ROC of NCI-H1299 and NCI-H1975 models is even 

better with values in range of 0.75 to 0.95. The sensitivity of models is very good and does not fluctuate 

substantially especially for NCI-H1975. Meanwhile, the specificity varies around 0.50 with some 

outliers of 0.1. 

 
Figure 1. Performance of base models. Performance metrics of datasets were compared and 

the significance of difference was denoted by symbol (ns: not significant, *: significant with p value 

limit of 0.05, **: significant with p value limit of 0.01, ***: significant with p value limit of 0.001, ****: 

significant with p value limit of 0.0001). 

For the first impression of the efficacy of model aggregation, we illustrated the relative improvement 

of esemble models on the basis of their base model performance mean in Figure 2.  
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Figure 2. Relative improvement of ensemble models compared to their component means. 

The outperformance of ensemble models is obvious. For the training set, all metrics are improved with 

the significant increase of specificity (around 100%). Although base models exhibit good ROC and 

sensitivity, these two parameters are still boosted with modest change of about 10 to 20%. The margin 

of improvement correlates with the size of the dataset. Meanwhile for two testing sets, ROC and 

specificity remain the same trend as the training set but sensitivity does not. ROC changes of testing sets 

are approximately half of that of training set but the enhancement of specificity is larger than training 

set for A549 and the testing 1 set of NCI-H1299 with some outstanding values of more than 150%. For 

NCI-H1975, specificity is also improved but with smaller margin. Sensitivity of ensemble models is 

poorer than that of base model means but the amount of decrease is only about 25% even in some cases 

(testing 2 of NCI-H1299), it does not decrease but shows constrast trend. 

From 20 models per each endpoints, in total we generated 8000 possible combinations and the top VS 

models are shown in Table 1.. 

As the first target of virtual screening, we evaluated the ability of a VS protocol to maximize the total 

number of active compounds in a selected fraction of dataset through EF3. With the focus on the top 1% 

of screened data, all top models share the good EF with the maximum value of 30. Three remaining 

models have fairly lower EF of 25. This reflects the efficiency of our VS models to enrich 30 times more 

active molecules in the top 1% fraction than a uniform distribution of active compounds throughout the 

data.  

Among four models, we further compared their power in ranking active compounds as close to the first 

position as posible which is called early recognition problem3 by BEDROC. We assumed that 80% of 

screening importance is in the first 1% fraction corresponding to α value of 160.9. Again all models 

show remarkable performance with BEDROC of more than 0.60 and one model is outstanding with 

BEDROC of 0.62 (VS1).  
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Table 1. Virtual screening results 

Protocol AUAC EF1 BEDROC2 

VS1 0.69 30.00 0.62 

VS2 0.73 30.00 0.60 

VS3 0.71 30.00 0.60 

VS4 0.67 30.00 0.60 
1: EF at 1% 

2: BEDROC with α = 160.9 

The best BEDROC model successfully identifies active compounds in the first 6 positions. Although 

three models (VS2, VS3, VS4) yield the same BEDROC of 0.60, VS4 fails to recognize the sixth active 

position, VS2 and VS4 cannot identify the fifth ranking as active compound. However, if considering 

the highest ranking of inactive compounds, VS3 is the best model as inactive molecules are absent in the 

first 4.5% of screened data. Meanwhile with VS2, the first inactive compound is found in the first 2% 

fraction and with VS1 first 3% fraction. Balancing the efficiency of early recognition, we selected VS1 

as the final VS model. 

Conclusions 

In conclusion, we developed a multi objective desirability based scheme for VS of NSCLC anticancer 

drug. The selected VS model (VS1) show outstanding performance referring two important targets of 

VS: maximizing the number of active compounds in the first 1% fraction of the data and early 

recoginition of active compounds.  
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