

Hybrid Molecules Based on Fullerene C60 and Spiropyrans with Potential Light-Induced Cytotoxicity ⁺

Artur A. Khuzin *, Liliya L. Khuzina, Airat R. Tuktarov and Usein M. Dzhemilev

Institute of Petrochemistry and Catalysis of RAS, Ufa 450075, Russia; e-mail1@e-mail.com (L.L.K.); e-mail2@e-mail.com (U.M.D.)

* Correspondence: artur.khuzin@gmail.com

+ Presented at the 25th International Electronic Conference on Synthetic Organic Chemistry, 15–30 November 2021; Available online: https://ecsoc-25.sciforum.net/.

Abstract: In this work we present a novel spiropyran-containing photochromic pyrrolidinofullerene promising as an agent for photodynamic therapy of cancer.

Keywords: [60]fullerene; spiropyrane; merocyanine; Prato reaction; pyrrolidinofullerene; photochromism; cytotoxicity; antitumor activity

1. Introduction

Cancer is one of the leading causes of mortality among the working-age population around the world. To date, a huge number of chemotherapeutic drugs are used to treat oncological diseases, but most of the known and widely used anticancer drugs in medical practice are extremely toxic and non-selective. One of the possible approaches to solving this problem is the use of photoactivated molecules, which, under the action of light, can isomerize and pass from an inactive form to an active one in certain targets.

Currently, the literature describes a wide range of different classes of compounds that exhibit antitumor activity under the influence of UV light [1–3]. These include dithienylethenes [4], fulgimides [4], azobenzene [5], etc. [6–9].

The cytotoxicity of spiropyrans and their photoinduced merocyanine forms is poorly studied due to the limited number of studies and a rather narrow range of photochromic molecules, which does not allow revealing the pattern of structure-cytotoxic activity. So, to date, the only study of the successful application of photo switching of cytotoxicity of spirophotochromes in relation to cancer cells is the work [10] devoted to the synthesis of water-soluble spiropyran, which penetrates into Hek293 cells without showing a cytotoxic effect, as long as under the influence of UV light thermostable the form of spiropyran is not isomerized to merocyanine.

Due to their structural features, spiropyrans penetrate poorly through cell membranes. Taking this into account, we assumed that the chemical binding of spiropyrans with fullerenes can contribute not only to better penetration of a new hybrid molecule into a cancer cell, but also to an increase in cytotoxicity due to the unique transport properties of the original molecule of the carbon cluster.

In order to confirm the idea put forward, in this work we carried out the synthesis of previously undescribed pyrrolidinofullerenes containing spiropyran addends.

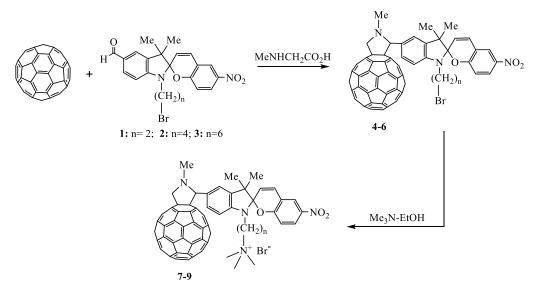
2. Results and Discussion

As the main method for the preparative preparation of pyrrolidinofullerenes, we chose the Prato reaction based on 1,3-dipolar cycloaddition to the carbon cluster of azomethine ylides generated in situ by the interaction of an aldehyde with sarcosine. Thus, the reaction of C60 fullerene with spiropyrans 1–3 in the presence of sarcosine leads to the

Citation: Khuzin, A.A.; Khuzina, L.L.; Tuktarov, A.R.; Dzhemilev, U.M. Hybrid Molecules Based on Fullerene C60 and Spiropyrans with Potential Light-Induced Cytotoxicity. *Chem. Proc.* 2021, *3*, x. https://doi.org/10.3390/xxxx

Academic Editor: Julio A. Seijas

Published: 15 November 2021


Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2021 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

formation of pyrrolidinofullerenes 4–6 with a yield of 56–62%. The choice of these starting monomers is due to several reasons. The presence of the NO₂–group, as was shown in our previous work [11], promotes the manifestation of the photochromic properties of the new hybrid molecule. The use of alkyl bromide substituents of various lengths at the nitrogen atom of the indole fragment will make it possible to establish the effect of the arrangement of the ammonium group in the hybrid molecule on the water-soluble properties of the latter.

Scheme 1. Synthesis of pyrrolidinofullerenes containing spiropyrane moieties.

At present, physicochemical studies of the photochromic properties of new hybrid molecules are being carried out in order to identify the most promising samples for subsequent study of their cytotoxic activity.

3. Materials and Methods

All reactions were performed under an argon atmosphere and in anhydrous solvent. The solvents and reagents were dried or refined according to the literature procedures. Commercially available [60]fullerene (99.5% pure, Sigma-Aldrich) was used. The reaction products were analyzed on a HPLC chromatograph Shimadzu SPD-20A (Japan). The 1H and 13C NMR spectra were run on a Bruker Avance-500 spectrometer. The mass spectra were obtained on an UltraFlex III TOF/TOF (Bruker Daltonik GmbH, Germany) operating in linear (TOF) and reflection (TOF/TOF) positive and negative ion modes.

Procedure for the synthesis of pyrrolidinofullerenes 4-6.

To a solution of 0.1 g (0.139 mmol) of C60 in 15 mL of chlorobenzene 0.025 g (0.278 mmol) of sarcosine and 0.695 mmol of corresponding spiropyran aldehyde 1–3 were added. The resulting mixture was heated for two hours at 100-110 oC. The reaction products 4–6, and the starting fullerene C60 were separated by the semi-preparative HPLC, eluent was toluene.

Procedure for the synthesis of pyrrolidinofullerenes 7–9.

Trimethylamine-EtOH solution (0.5 mL, 35% Et3N in EtOH) was added to a flask containing compounds 4–6 (50 mg, 0.04 mmol) in 5 mL of toluene and the solution was stirred at rt for 24 h in darkness. Precipitate formed was collected by filtration and washed with EtOH (90% yield).

4. Conclusions

Under the conditions of the Prato reaction, the synthesis of new pyrrolidinofullerenes containing spiropyran addends, potentially possessing light-regulated cytotoxic activity, was carried out.

Author Contributions: Conceptualization, Data curation, Synthetic investigation, Writing-original draft, and review and editing, A.A.K., L.L.K. and A.R.T.; Supervision: U.M.D. All authors have read and agreed to the published version of the manuscript.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data available on request.

Acknowledgments: This work was financially supported by Russian Science Foundation (Project No. 21-73-10112) and approved plans for research projects at the IPC RAS State Registration No. AAAA-A19-119022290008-6 (2019-2021).

Conflicts of Interest: The authors declare no conflict of interest.

References

- 1. Mayer, G.; Heckel, A. Biologically Active Molecules with a "Light Switch". Angew. Chem. Int. Ed. 2006, 45, 4900–4921.
- 2. Young, D.D.; Deiters, A. Photochemical control of biological processes. Org. Biomol. Chem. 2007, 5, 999–1005.
- 3. Sortino, S. Photoactivated nanomaterials for biomedical release applications. J. Mater. Chem. 2012, 22, 301–318.
- Wutz, D.; Gluhacevic, D.; Chakrabarti, A.; Schmidtkunz, K.; Robaa, D.; Erdmann, F.; Romier, C.; Sippl, W.; Jung, M.; Konig, B. Photochromic histone deacetylase inhibitors based on dithienylethenes and fulgimides. *Org. Biomol. Chem.* 2017, *15*, 4882–4896.
- 5. Wang, H.; Liang, X. Azobenzene-modified antisense oligonucleotides for site-specific cleavage of RNA with photocontrollable property. *RSC Adv.* **2016**, *6*, 93398–93402.
- 6. Borowiak, M.; Nahaboo, W.; Reynders, M.; Nekolla, K.; Jalinot, P.; Hasserodt, J.; Rehberg, M.; Delattre, M.; Zahler, S.; Vollmar, A.; et al. Photoswitchable Inhibitors of Microtubule Dynamics Optically Control Mitosis and Cell Death. *Cell* **2015**, *162*, 403–411.
- 7. Sheldon, J.E.; Michael Dcona, M.; Lyons, C.E.; Hackett, J.C.; Hartman, M.C.T. Photoswitchable anticancer activity via trans–cis isomerization of a combretastatin A-4 analog. *Org. Biomol. Chem.* **2016**, *14*, 40–49.
- Scherbakov, M.A.; Salnikova, D.I.; Mikhailova, A.; Balakhonov, R.; Yadykov, A.; Shirinian, V. 47P Evaluation of combinations of photoswitchable novel combretastatin A-4 analogues with chemotherapy drugs and metformin. *Ann. Oncol.* 2021. https://doi.org/10.1016/j.annonc.2021.01.062.
- Weng, T.; Qiu, X.; Wang, J.; Li, Z.; Bian, J. Recent discovery of indoleamine-2,3-dioxygenase 1 inhibitors targeting cancer immunotherapy. *Eur. J. Med. Chem.* 2018, 143, 1–7.
- 10. Nilsson, J.R.; Li, S.; Önfelt, B.; Andréasson, J. Light-induced cytotoxicity of a photochromic spiropyran. *Chem. Commun.* **2011**, 47, 11020–11022.
- Tuktarov, A.R.; Khuzin, A.A.; Tulyabaev, A.R.; Venidictova, O.V.; Valova, T.M.; Barachevsky, V.A.; Khalilov, L.M.; Dzhemilev, U.M. Synthesis, structure and photochromic properties of hybrid molecules based on fullerene C60 and spiropyrans. *RSC Adv.* 2016, *6*, 71151–71155.