Salima Dib^{1,2}, Bachir Mostefa-Kara¹, Didier Villemin^{2, *} and Nathalie Bar²

¹Laboratoire de Catalyse et Synthèse en Chimie Organique, Faculte des Sciences, Universite de Tlemcen, BP 119,13000 Tlemcen, Algeria
²Normandie Université France, ENSICAEN, LCMT, UMR CNRS 6507, INC3 M, FR 3038, Labex EMC3, LabexSynOrg, 6 Bd Maréchal Juin 14050 Caen, France

*Correspondence: didier.villemin@ensicaen.fr

Presented at the 25th International Electronic Conference on Synthetic Organic Chemistry, 15 November 2021–30 November 2020. Available online: https://ecsoc-25.sciforum.net/.

The benzotropolones represent a class of natural products, which consists of a tropolone unit (hydroxycycloheptatrienone) fused to a benzene ring. The most popular is Purpurogallin (1) present in Quercus tree and displaying biological properties

Purpurogallin (1) can yet be converted into purpurogallin tetra-acetate by peracetylation with acetic anhydride in the presence of DMAP as catalyst in a yield of 87 %.(Scheme1).

Scheme 1: acetylation of purpurogallin

Purpurogallin which possesses an antiaromatic tropolone nucleus is able to behave like a diene. So, we described herein the Diels–Alder reaction of Purpurogallin tetraacetate with different dienophiles in refluxing bromobenzene (154 $^{\circ}$ C) according to the scheme 2.

Scheme 2: Diels-Alder reactions between Purpurogallin tetraacetate and various dienophiles (3a-d).

OAc

Entry	Dienophile	Product (3a-d)	Yield
a	N-phenylmaleimide	4a	39%
b	N-Ethylmaleimide	4b	36%
С	Maleic Anhydrid	4c	58%
d	Benzoquinone	4d	41%

Theoretical studies

The frontier orbitals of purpurogallin tetra-acetate (2) and dienophiles (3a-d) were calculated using the DFT-B3LYP with the 6-31G(d) basis set in vacuum and then in bromobenzene (dielectric constant $\varepsilon = 5.4$) using Continuum Solvation Models, SM8 and are reported in the Table 2.

Product	HOMO (eV)	LUMO (eV)	μ debye
	In bromobenzene		
Purpurogallin (1)	-5.59	-1.86	3.36
Tetraacetylpurpurogallin	-6.10	-1.69	12.84
Tetramethylpurpurogallin	-5.65	-1.48	2.88
Maleic anhydride 3c	-7.99	-2.88	4.15
N-Phenyl maleimide 3a	-6.46	-2.50	1.31
N-Ethyl maleimide 3b	-7.27	-2.33	0.85
Benzoquinone 3d	-7.11	-3.22	0

5

Table 2: Frontier orbitales calculated

From the position of the frontier orbitals, i.e difference between HOMO^d and LUMO^a and difference between HOMO^a and LUMO^d, the most probable Diels-Alder reaction appears as normal demand with a transfer of electrons from the purpurogallin tetraacetate or tetramethyl purpurogallin as donor to acceptor dienophile in the 4 cases studied. In the case of non-benzenoid aromatic compounds like purpurogallin or tetraacetate purpurogallin, the antiaromaticity leads to normal-electron-demand Diels-Alder reactions.

Conclusions:

- Tetraacetylpurpurogallin leads to reaction of Diels-Alder with cyclic dienophiles in moderate yield under thermal activation.
- The reactions of purpurogallin tetraacetate 2 with the different dienophiles 3a-d correspond at a Normal Electron Demand (NED) Diels-alder reactions.