

Foods: Bioactives Processing, Quality and Nutrition. 12 – 13 April 2013

EFFECT OF α-AMYLASE PRETREATMENT ON PROTEIN EXTRACTION FROM DEFATTED ROSELLE SEED

Reporter : Dr. Ngoc Yen Tran-Thi Advisor : Prof. Yi-Hsu Ju

Department of Chemical Engineering, National Taiwan University of Science and Technology, 43 Sec. 4, Keelung Road, Taipei 106-07, Taiwan

Outline

- ✤ Introduction
- Objectives
- Materials and methods
- Results and discussion
- Conclusion

INTRODUCTION

Roselle seed (Hibiscus sabdariffa Linn)

Roselle seed is a **byproduct** in the production of roselle calyx and is normally discarded as **waste** or used as cattle-feed.

Roselle seed (Hibiscus sabdariffa Linn)

Roselle seed

- Source of protein (19.1 28.1%), lipid (18.8 35.4%) and carbohydrate (26.6 – 36.4%).
- Excellent feed for chicken and livestock.
- Ingredient for human meal (seed powder, fermented product)
- Roselle seed protein can be used as supplement food mixture for human and animal, due to its essential amino acids profile.
- Potential of lowering total cholesterol and low density lipoprotein cholesterol levels in rat.
- Found an advantageous to isolate protein from defatted roselle seed by using water and saline solution at pH 9.
- α- Amylase attack bonding of oligosaccharide and protein, which enhance extractable protein.

Objectives

Protein extraction with α -amylase pretreatment

- Effect of α -amylase on protein extraction yield
- Molecular weight of roselle protein (SDS PAGE)

MATERIALS & METHODS

Conceptual structure of study.

Protein extraction without α -amylase pretreatment

Protein extraction with α -amylase pretreatment

RESULTS AND DISCUSSION

Yield of protein extraction with and without pH adjustment

	Yield of protein extraction (%)		
Solvent	Without pH	pH 9	
	adjustment		
DI water	20.25±1.47	25.32±2.01	
NaCl	26.47±1.32	26.92±1.66	
Total	46.72	52.24	

Compositions of DRSF and RPC (%)

	DRSF	RPC ^a
Protein	38.18±0.20	86.99±0.06
Starch	22.25±0.18	3.61±0.11
Fiber	27.92±0.11	4.22±0.10
Ash	8.50±0.04	4.90±0.06

^a The composition was measured from RPC, which was obtained in optimum condition of α-amylase pretreatment (1 800 units α-amylase/g DRSF; 6 h hydrolysis time)

Effect of α -amylase amount and pretreatment time on protein yield

Protein molecular weight

Coomassie-stained SDS-acrylamide gel (12% acrylamide) containing RPC samples. M-Marker; S1 - SDS PAGE of RPC; N1 – native PAGE of RPC.

Amino acids compositions (%) of RPC, protein isolate obtained from previous study^a (Al-Numair & Ahmed , 2008)

Amino acids composition	RPC	Roselle seed protein isolate ^a
Essential		
Lysine	3.84±0.13	5.10±0.41
Threonine	4.24±0.29	2.91±0.28
Valine	4.37±0.39	4.55±0.02
Methionine+Cystine	NA	3.89
Methionine	0.99±0.31	1.48±0.01
Cystine	NA	2.41±0.09
Isoleucine	3.25±0.23	3.01±0.17
Leucine	6.36±0.27	5.92±0.50
Phenylalanine+Tyrosine	NA	8.71
Phenylalanine	4.16±0.28	5.99±0.29
Tyrosine	NA	2.72±0.26
Histidine	2.35±0.19	1.80±0.18
Tryptophan	NA	0.76±0.18
Non-essential		
Arginine	10.21±0.34	9.58±0.26
Aspartic acid	10.11±0.56	10.28±0.29
Glutamic acid	28.78±0.50	24.00±0.59
Proline	4.29±0.17	4.30±0.20
Glycine	4.96±0.06	5.09±0.21
Alanine	4.05±0.36	5.56±0.06
Serine	5.51±0.25	4.70±0.21

Conclusion

- * α -Amylase pretreatment was effective in enhancing protein extraction yield from DRSF (from 52.24% to 72.18%)
- Pretreatment time has a slight effect on protein yield, whereas protein yield strongly depends on the amount of αamylase used
- * The major roselle proteins is high molecular weight protein
- Methionine is the limiting amino acid of protein obtained from roselle seeds cultivated in Vietnam

ACKNOWLEDGEMENT

The authors would like to express gratitude to Dr. Hsi-Mei Lai, Department of Agricultural Chemistry, National Taiwan University for providing the Kjeldahl analysis of protein, and to the staffs of TCX-D800 Metabolic Core, Technology Commons, College of Life Science, National Taiwan University for their help with amino acid derivatization and LC-ESI-MS analysis.

Thank you for your attention!