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Abstract 
The study of the bacterial metabolic structure of MNs with high resistance to the action of 
Nanoparticles (NPs) could help to design new NPs with specific antibacterial activity. We have used 
3 numerical parameters which, in terms of graph theory, Nms represents the number of nodes, <Lins> 
the total number of arrows entering a node and <Louts> is the total number of arrows leaving a node 
of the complex graph. From another point of view, Nms is the number of metabolites in the MN, 
<Lins> is the number of metabolites that are precursors of the query metabolite and <Louts> is the 
number of metabolites that are products of a metabolic reaction with the query metabolite as a 
precursor.  Finally, ACUs is a new parameter that represents the fusion of the 3 parameters 
mentioned above. This study also provides a closer look at the predictive power of the IFPTML-
LOGR and IFPTML-RF models. 



MOL2NET, 2021, 7, ISSN: 2624-5078                                                                                     2 
https://mol2net-07.sciforum.net/ 

 

 
Discussion 
In this study about the bacterial metabolic structure of MNs and the nanoparticle antibacterial 
activity is very important for predicted new NPs. The information of Nms, <Lins> and <Louts> are 
important variables to calculate a new parameter called ACUs. This variable represents the rate of 
anabolism-catabolism imbalance of MNs in the sth organism. Equation (1) ACUs is as follows: 
 

ACU! = α ·
(< L"#! > −< L$%&! >)

N'!
		(1) 

 
The difference between the two indices in this case study represents the measure of the imbalance 
of anabolic versus catabolic metabolism in the network. The symbol α is 10 and is used as a scaling 
factor to transform the ACUs to the same scale as <p(f(n,c,j,j,s)=1)pred> for further comparison. Nms 
is the number of metabolites in the MN. In the bacterial metabolic structure MNs, a low mean value 
p(f(n,c,c,j,s)=1)avg = <p(f(n,c,j,s)=1)pred> (mean of all values of p(f(n,c,j,s)=1)pred) for the sth 
bacterium against the same NP in different assays is predicted to indicate that this organism should 
be highly resistant to this particular NP, regardless of the assay selected. Table (1) represents the 
values of p(f(f(n,c,s,j)=1)avg, Nms, <Louts>, <Lins>, and AUCs of all MNs studied. These observed 
and calculated average values are compared between species and/or strains susceptible to a given 
NP in a specific assay. The p(f(n,c,j,s)=1)avg values are the mean value of the predicted probabilities 
for broad groups of bacterial species. The values of p(f(f(n,c,j,s)=1)ns are both the observed and 
predicted values for specific pairs of NPs versus MNs. See equation (2): 
 

p(f(n,c,j,s)=1)ns = n(f(n,c,s,j)=1/n,s)/n(n,s)       (2) 
 
In this equation n(f(n,c,s,j)=1/n,s) is the number of success cases. The parameter n(n,s) is the total 
number of cases since the NPn vs. MNs pair has been used in preclinical trials. Two IFPTML models 
were used both the observed and the calculated version of p(f(f(n,c,c,j,s)=1)ns.  This study also 
provides a closer look at the predictive power of the IFPTML-LOGR and IFPTML-RF models. 
Taking into account the biological significance of the ACUs and the p(f(n,c,j,s)=1)ns values of the 
susceptibility of NP bacteria vs. the ACUs index of the MNs of all bacteria, then: ACUs > 0.5, for 
MNs exhibiting unbalanced metabolism on the anabolic side. ACUs = 0, for MNs that have a 
balanced anabolic-catabolic metabolism. In the range -0.5 < ACUs < +0.5, for MNs that have a 
nearly balanced metabolism. ACUs < -0.5, for MNs presenting an unbalanced metabolism on the 
catabolic side. 
 
The choice of the above values is empirical and should be seen only as a practical tool for 
systematization/preliminary visualization of structural-functional information on NPn vs. MNs 
interaction. For systematization purposes. The Figure has been divided into four quadrants QI, QII, 
QIII and QIV delimited by quartiles of ACUs and p(f(f(n,c,c,j,s)=1)ns within the range 0-1. The first 
quadrant (QI) includes all NP-resistant bacteria (p(f(f(n,c,c,j,s)=1)ns < 0.5) with MNs unbalanced 
on the anabolic side (ACUs > 0.5). The second quadrant (QII) includes all NP-susceptible bacteria 
(p(f(f(n,n,c,j,s)=1)ns > 0.5) with MNs unbalanced on the anabolic side (ACUs > 0.5). The third 



MOL2NET, 2021, 7, ISSN: 2624-5078                                                                                     3 
https://mol2net-07.sciforum.net/ 

 

quadrant (QIII) includes all NP-susceptible bacteria (p(f(n,c,c,j,s)=1)ns > 0.5) and with MNs nearly 
balanced (ACUs = range 0 - 0.5). The last quadrant (QIV) includes all NP-susceptible bacteria 
(p(p(f(n,c,c,j,s)=1)avg < 0.5) with nearly balanced MNs (range ACUs = 0 - 0.5). The IFPTML models 
used in this study can help reduce costs and time in the discovery of new NPs by including the MN 
structure of the target bacteria increasing the range of application of IFPTML models to design NPs 
against other bacterial species.  
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