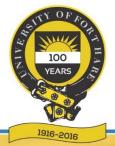


Effect of pre-slaughter handling on lamb welfare and meat quality

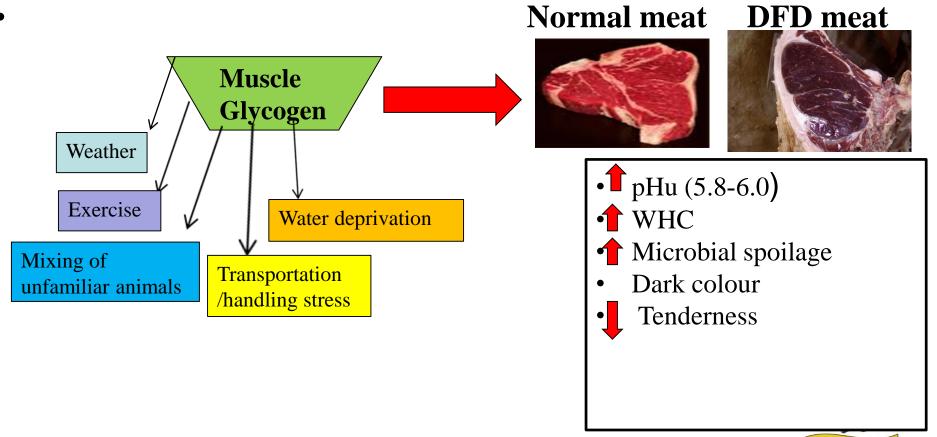

By

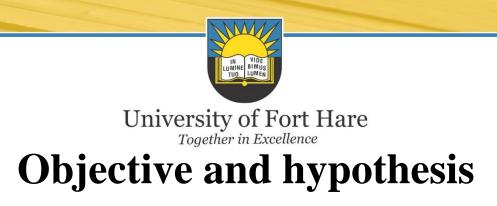
Stempa, T^{#1}., Moyo, B., and Mpendulo², C.T.¹

¹Department of Livestock and Pasture Science, University of Fort Hare, Alice 5700, RSA

²Fort Cox Agriculture and Forestry Training Institute, King William's Town 5600, RSA Paper presented at The 2nd International Electronic Conference on Animals - Global Sustainability and Animals: Welfare, Policies and Technologies

#corresponding author: tstempa@ufh.ac.za




- Exposure to stress is unavoidable during the pre-slaughter period
 - Transportation, loading, offloading, novel environment, fasting, mixing and handling at the abattoir (Grandin, 2012) e.g improper stunning
- Response to stress differs based on:
 - Intensity, duration and individual susceptibility of the animal to the stressor e.g species, sex and breed (Stempa *et al.*, 2016)
- Pre-slaughter stress is closely related to meat quality (Lui et al., 2018)

Problem Statement

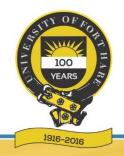
- Main objective:
 - To determine the effect of pre-slaughter handling on lamb welfare and meat quality of Merino lambs exposed to different pre-slaughter handling conditions

> Null hypothesis

Pre-slaughter handling does not have an effect on lamb welfare and meat quality of Merino lambs

- **Data collection: Ethical considerations** (Certificate number: MUC371SSTE01)
 - > 100 eight-month-old female Merino lambs
 - The lambs were transported from the farm to the abattoir over different distances (195.5 km and 288.5 km)
 - On arrival at the abattoir, the lambs were placed at the lairages for different durations; one group was lairised for 8 hours and the other for 12 hours
 - At the lairages, the lambs were given ad-libitum access to water and feed was withdrawn.
 - Humanely slaughtered at a commercial abattoir (Meat safety Act, No. 40 of 2000)

- Data collection: Ethical considerations (Certificate number: MUC371SSTE01)
 - Exsanguination blood was collected using 10.0 ml disposable Becton Dickinson vacutainer tubesanticoagulant an (Ethylenediaminetetraacetic acid; EDTA)
 - Creatine kinase and Lactate dehydrogenase
 - Blood tubes were centrifuged (Model 5403 Centrifuge, Gatenbay Eppendorf GmbH, Engelsdorp, Germany) at 21°C for 1000 g for 15 minutes
 - Plasma was transferred into pre-chilled sterile 15 ml Eppendorf tubes and stored at -80°C until analysis.


- Plasma samples analysis:
 - The samples of stored plasma were analysed for CK and LDH using a Model DXC 600 machine (Beckman Coulter, Ireland) with reactive ingredients for SYCHRON Systems (CK 2 x 200 and LD-P 2 x 200)
 - All the ingredients added for quantitative determination of CK and LDH activities of units per litre (U/L) in plasma.

Data collection:

- Carcass ultimate pH and meat temperature were measured on the right side of each carcass by inserting the piercing probe in the *longissimus* muscle between the 12th and 13th ribs at 45 minutes and 24 hours post-mortem
- ▶ Portable pH meter (Hach HQ11d) calibrated in buffers with pH 4.00 and 7.00
- Carcass measurements:
 - ➤ warm carcass weight
 - ➤ cold carcass weight
 - ➤ carcass fatness

- Meat sample harvesting:
- 100 samples (~250 grams & 100 mm thick) were harvested from the Muscularis longissimus thoracis et lumborum (LTL) each carcass for meat quality measurements

Meat colour measurements:

- Samples were further processed from 100 mm thick into 20 mm steaks using a band saw (CIE,1979)
- Exposed to air for 30 minutes to facilitate 'blooming'

- Colour variables (L*,a*,b*) were measured using a BYK-Gardner 6692 Colour-guide 45/0 glass sealed, with a 20 mm diameter measurement area and illuminant D65-daylight, 10° observation angle
 - → Hue angle = $[\tan^{-1}(b^*) / (a^*)]$
 - ► Chroma = $(a^2 + b^2)^{0.5}$

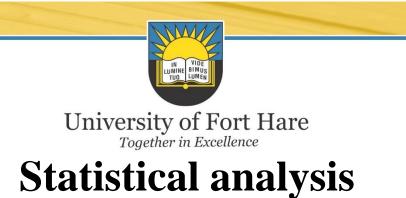
(Wyszcecki and Stiles, 1982; Minolta, 1993)

Thawing and cooking loss measurements:

• At day seven the frozen samples were weighed (Nimbus Precision Balance NBL 214i) and allowed to thaw for 10 hours at room temperature, after thawing the samples were reweighed

- $TL\% = \frac{\text{weight from freezer}}{\text{weight before cooking}} \times 100$
- Samples were cooked in a waterbath (Pura 30) for 45 minutes to a final internal temperature of 72 °C (AMSA, 1995)

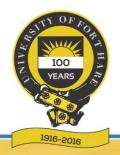
 $CL\% = \frac{\text{Wt before cooking-Wt after cooking}}{\text{Wt before cooking}} \times 100$

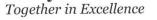


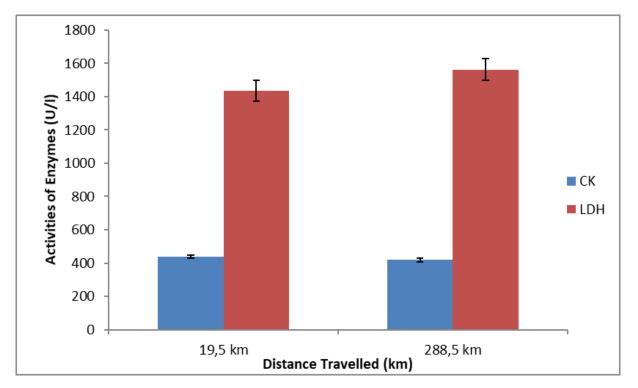
- Warner-BratzlerShearForcemeasurements:
- From each sample, three subsamples of approximately 12.7 mm core diameter were extracted parallel to the long axis of the muscle fibres (AMSA, 1995)
- Each core was sheared once through the centre at an angle perpendicular to the direction of the fibre using the Warner-Bratzler shear device attached to the Universal Instron apparatus (Model 3344, crosshead speed = 400 mm/min)
- WBSF was measured as the peak

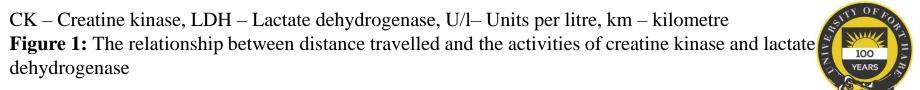
force (Newtons) average for three cores

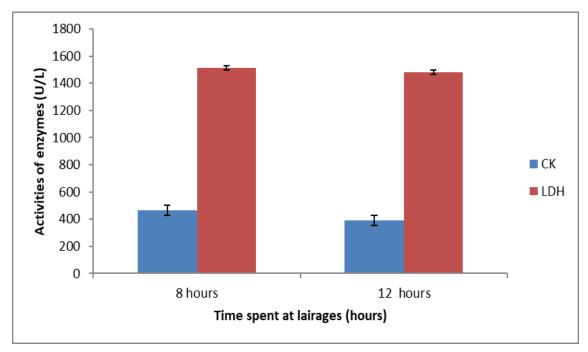
per sample


- Statistical analysis was carried out using the Statistical Analysis System (SAS, version 9.0)
- The effect of transportation distance, lairage duration, on CK, LDH, carcass characteristics and technological meat quality attributes using the GLM procedures of SAS (2009)
- Differences between least-square means were compared using the PDIFF procedure of SAS (2000)


Statistical analysis

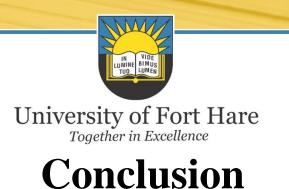

- The statistical model used was:
- $Yijl = \mu + \alpha i + \beta j + (\alpha \beta)ij + \epsilon ijk$
- where: Yijk = response variable (CK, LDH, WCW, CCW, pHu, Tm24hours, L*,a*,b*,C*,H*,CL, TL,WBSF); μ = overall mean; αi = ith effect of distance travelled (195.5 km and 288.5 km); βj = jth effect of lairage duration (8 and 12 hours); ($\alpha\beta$)ij = interaction between distance travelled and lairage duration; ϵijk = Random error



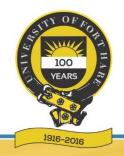

University of Fort Hare

CK – Creatine kinase, LDH – Lactate dehydrogenase, U/l– Units per litre

Figure 2: The relationship between lairage duration and the activities of creatine kinase and lactate dehydrogenase


Table 1: Transportation distance and lairage duration on carcass and lamb technological attributes from the Muscularis longmissius thoracis et lumborum

Parameters	Transportation distance		Lairage duration		<i>P</i> -value		
	19.5 km	288.5 km	8 hours	12 hours	Distance	Lairage	D*L
WCW(kg)	20.10±0.320	20.08±0.325	20.09±0.334	20.09±0.311	0.9764	0.9851	0.6216
CCW(kg)	19.48±0.313	19.42±0.318	19.42±0.326	19.48±0.304	0.8838	0.8798	0.5731
CF (mm)	2.10±0.069	2.13± 0.070	2.06 ± 0.072	2.17± 0.067	0.7892	0.2836	0.9945
pH_u	6.03±0.144	6.19± 0.146	6.22±0.150	6.00 ± 0.140	0.4449	0.2999	0.2509
T _{m24hours}	16.05±0.193	15.84±0.196	16.08±0.201	15.81±0.187	0.4539	0.3306	<mark>0.0043**</mark>
L*	38.48±0.485	38.67±0.493	38.93±0.507	38.22±0.472	0.7799	0.3080	0.7691
a *	14.86±0.295	15.20±0.300	15.07±0.308	15.00±0.287	0.4215	0.8574	0.8634
b *	6.75±0.394	7.20± 0.310	7.32± 0.411	6.64±0.382	0.4287	0.2270	0.5203
C*	16.48±0.392	16.94±0.398	16.92±0.41	16.50±0.38	0.4138	0.4583	0.7601
H*	0.41 ± 0.018	0.44 ± 0.018	0.44 ± 0.018	0.41 ± 0.017	0.2717	0.2445	0.2329
TL (%)	11.12±0.805	15.17 ^b ±0.819	12.84±0.841	13.45±0.783	<mark>0.0006***</mark>	0.5985	0.1478
CL (%)	27.33±1.241	28.42±1.262	25.12±1.210	30.62±1.207	0.5378	0.0025**	<mark>0.0333*</mark>
WBSF (N)	32.43±1.172	35.87±1.191	33.61±1.223	34.69±1.139	<mark>0.0422*</mark>	0.5204	0.9469


100

1916-2014

Significant differences at $P < 0.05^*$, $P < 0.01^{**}$, $P < 0.001^{***}$, WCW = warm carcass weight, CCW = cold carcass weight, CF-carcass fatness, pH_u = ultimate pH, $T_{m24hours}$ = meat temperature 24 hours post slaughter, L* = Lightness, a*= redness, b*= yellowness, C*= Chroma, H*= Hue angle and WBSF= Warner Braztler shear force

• The results indicate that longer transportation and lairage durations made the lambs more susceptible to pre-slaughter stress and negatively affected the meat quality

THANK YOU

