

Chaired by **DR. ADRIANO SOFO**

Cachrys ferulacea (L.) Calest. extracts as natural photosensitizers: an in vitro photobiological study

Mariangela Marrelli *, Maria Rosaria Perri, Valentina Amodeo, Filomena Conforti, Francesca Giordano, Maria Luisa Panno and Giancarlo Statti

Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy

* Corresponding author: mariangela.marrelli@unical.it

Abstract: The Cachrys genus (Apiaceae) is widely distributed in the Mediterranean Basin. Previous studies highlighted the photobiological properties of different *Cachrys* species, such as *C. pungens* Jan, *C. libanotis* L. and *C. sicula* L. Based on these promising previous results, and in order to continue exploring such interesting genus, the aim of this study was to evaluate the photocytotoxic activity of extracts from Cachrys ferulacea (L.) Calest. Aerial parts were collected in Calabria (Southern Italy) and extracted through three different techniques: traditional maceration, pressurized cyclic solid-liquid (PCSL) extraction using Naviglio extractor® and supercritical CO₂. The phytochemical composition was assessed with gas chromatography-mass spectrometry (GC-MS) and the photocytotoxic potential of samples was evaluated on UVA-irradiated C32 melanoma cell line. The apoptotic responses on treated cells were also assessed. Furthermore, the phenolic and flavonoid content and the in vitro antioxidant activity were also estimated. Different coumarins were identified and quantified. All the extracts affected cell viability in a concentration-dependent manner after irradiation with UVA light for 1 hour at a dose of 1.08 J/cm². Sample obtained through supercritical CO_2 extraction showed the highest activity, with an IC_{50} value equal to 4.91 µg/mL. This study could provide a starting point for further researches focusing on new photosensitizing agents useful in cancer photochemotherapy.

IECPS

Keywords: Apiaceae; *Cachrys*; melanoma; photosensitizing agents; plant extracts.

Background

Photochemotherapy

<u>Photodynamic therapy (PDT)</u>

600-800 nm

Photo from https://commons.wikimedia.org/

PUVA therapy (Psoralens + UVA)

(320-400 nm)

• Cutaneous T-cell lymphoma

Marrelli et al. *Curr. Med. Chem.* **2014**, *21*, 1371-1390. Via, L., Magno, S. Photochemotherapy in the treatment of cancer. *Curr. Med. Chem* **2001**., *8*, 1405-1418. Trautinger, F. Phototherapy of cutaneous T-cell lymphomas. *Photochem. Photobiol. Sci.* **2018**, *17*, 1904-1912. Tarabadkar, E.S.; Shinohara, M.M. Skin directed therapy in cutaneous T-cell lymphoma. *Front. Oncol.* **2019**, *9*, 260.

Furanocoumarins

Diffey B. *Physics in medicine and biology*. **2006**, *51*, R229–R244.

Caffieri S. Photochem. Photobiol. Sci. 2001, 1, 149-157.

Conforti F. et al. Natural and synthetic furanocoumarins a treatment for vitiligo and psoriasis. *Curr. Med. Chem.* **2009**, *4*, 38-58. Figures from: https:// publicdomainpictures.net - Petr Kratochvil

Previous works

Cachrys pungens Jan

Cel		
Pro	liferation	
ell Prolif	2012 45 39-47	

doi: 10.1111/j.1365-2184.2011.00791.x

Cachrys pungens Jan inhibits human melanoma cell proliferation through photo-induced cytotoxic activity

G. Menichini*, C. Alfano*, E. Provenzano†, M. Marrelli‡, G. A. Statti‡, F. Menichini‡ and F. Conforti‡

Sampla	IC ₅₀ (μg/mL)			
Sample	Irradiated cells	Unirradiated cells		
Methanol	0.487 ± 0.037	49.950 ± 0.018		
Chloroform	0.286 ± 0.067	34.280 ± 0.022		
Coumarin fraction	0.209 ± 0.033	31.620 ± 0.018		
Data were expressed as mean ± S. E. M. (n=6).				

MDPI

Photo from Saxifraga-Willem van Kruijsbergen

plants

Article Assessment of Photo-Induced Cytotoxic Activity of Cachrys sicula and Cachrys libanotis Enriched-Coumarin Extracts against Human Melanoma Cells

Mariangela Marrelli *©, Maria Rosaria Perri, Valentina Amodeo, Francesca Giordano [©], Giancarlo A. Statti *, Maria Luisa Panno [†] and Filomena Conforti *,[‡]©

Cachrys sicula L.

Photo from Saxifraga--Ed Stikvoort

Cachrys ferulacea (L.) Calest.

- Synonym of *Prangos ferulacea* (L). Lindl.
- The Cachrys group (Apiaceae) is divided into several genera: Cachrys, Prangos, Alocacarpum, Bilacunaria, Ferulago, Diplotaenia, Eriocycla and Azilia.
- *C. ferulacea* is an orophilous species of the eastern Mediterranean and western Asia.
- Species rich in coumarins, the main class of secondary metabolites detected so far. In addition, the aerial parts also contain flavonoid glycosides.
- Antioxidant, antimicrobial, hypoglycemic activities; analgesic effects.

Aim of the research

Photo from Saxifraga--Ed Stikvoort

- Photocytotoxic potential of aerial parts extracts
 - Traditional maceration (TM)
 - Pressurized cyclic solid-liquid (PCSL, Naviglio® extractor)
 - Supercritical CO₂ (S-CO₂)
- Phytochemical composition
- Photocytotoxic effects on UVA-irradiated C32 melanoma cell line
- Apoptotic responses
- Antioxidant potential

Bruno, M. et al. *Planta Med.* **2019**, *85*, 815-824. Kafash-Farkhad, N. et al. *Life Sci.* **2013**, *10*, 360-367. Naviglio D. *Anal Lett* **2003**, *36*, 1647-1659. http://www.worldfloraonline.org/taxon/wfo-0000577534. Accessed on: 17 Nov 2021

Plant material and extraction procedure

Photo from Saxifraga--Ed Stikvoort

Extraction technique	Abbreviation	Yield (%)	Total phenolic content (mg/g)	Total flavonoid content (mg/g)
Maceration	TM	14.7	$17.99\pm0.50~^{\text{a}}$	0.63 ± 0.06 a
Naviglio®	PCSL	3.6	$4.14\pm0.24~^{b}$	$0.18\pm0.02~^{b}$
Supercritical CO ₂	S-CO ₂	2.4	2.32 ± 0.09 ^c	0.0073 ± 0.0006 c

Data are expressed as mean SD (n = 3). Results expressed as mg of chlorogenic acid (for phenolics) or quercetin equivalent (for flavonoids) per g of dry plant material. Letters along columns indicate statistically significant differences at p < 0.05 (Bonferroni post-hoc test).

Chemical composition: GC-MS

C 1	Rt -	Relative peak area percentage			
Compound		TM	PCSL	S-CO ₂	
Furanocoumarins					
Psoralen	17.645	-	-	2.93 ± 0.25	
Xanthotoxin	19.251	1.91 ± 0.04	2.73 ± 0.17	3.14 ± 0.11	
Bergapten	19.411	-	2.83 ± 0.13	4.30 ± 0.09	
Isopimpinellin	20.645	1.13 ± 0.05	0.89 ± 0.07	2.17 ± 0.14	
Marmesin	21.223	-	-	3.96 ± 0.19	
Coumarins					
Citropten	18.782	-	-	$\textbf{2.48} \pm \textbf{0.26}$	
Osthole	19.891	2.42 ± 0.12	2.03 ± 0.19	3.82 ± 0.19	
Isomeranzin	20.582	-	-	1.90 ± 0.11	
Terpenes					
Estragole	11.192	-	-	0.15 ± 0.02	
trans-Caryophyllene	13.827	0.81 ± 0.03	-	-	
Cadinene	14.816	0.54 ± 0.03	-	-	
Neophytadiene	17.450	0.78 ± 0.04	-	0.71 ± 0.06	

0 1	Rt	Relative peak area percentage		
Compound		TM	PCSL	S-CO ₂
Fatty acids				
Lauric acid	15.039	-	-	0.10 ± 0.01
Myristic acid	16.496	3.24 ± 0.20	0.25 ± 0.03	2.04 ± 0.09
Pentadecanoic acid	17.336	0.44 ± 0.03	-	-
7,10,13-hexadecatrienoic acid	17.959	0.97 ± 0.04	-	-
Isopalmitic acid	18.009	-	-	0.55 ± 0.04
Palmitic acid	18.113	8.49 ± 0.49	1.15 ± 0.10	0.14 ± 0.02
Margaric acid	18.891	0.33 ± 0.03	-	-
Oleic acid	19.091	-	0.36 ± 0.03	-
8,11- Octadecadienoic acid	19.371	-	1.08 ± 0.04	-
7,10,13-hexadecatrienoic acid	19.479	4.62 ± 0.41	-	-
Stearic acid	19.617	0.82 ± 0.03	-	-
Linoleic acid	19.702	1.69 ± 0.13	-	0.20 ± 0.02
Arachidic acid	20.988	1.13 ± 0.08	0.44 ± 0.04	-
Behenic acid	22.263	2.72 ± 0.22	1.33 ± 0.14	-
Tricosylic acid	22.954	1.13 ± 0.07	-	-
Lignoceric acid	23.760	4.39 ± 0.33	0.86 ± 0.04	1.00 ± 0.10
Cerotic acid	25.829	1.40 ± 0.10	-	-

Photo from Saxifraga--Ed Stikvoort

Multivariate Data Analysis

2

3

1

-3

-2

-1

0

S-CO₂ = Supercritical CO₂ extraction

Cluster analysis

TM = Traditional maceration PCSL = Pressurized cyclic solid-liquid extraction S-CO₂ = Supercritical CO₂ extraction

Quantitative analyses

Common a	TM	PCSL	S-CO ₂	
Compound	mg/mL ± SD			
Xanthotoxin	0.21 ± 0.02	0.42 ± 0.05	0.58 ± 0.06	
Bergapten	-	0.57 ± 0.04	0.72 ± 0.06	
Isopimpinellin	0.09 ± 0.01	0.053 ± 0.001	0.44 ± 0.03	

Data were expressed as mean \pm SD (n=3).

*** p < 0.001, * p < 0.05 (Students' t test)

Antioxidant activity

Sample	IC ₅₀ (μg/mL)			
Jumpic -	DPPH	β-Carotene		
		30 min	60 min	
TM	$77.37\pm1.58\ ^{\rm b}$	$19.57\pm0.67~^{b}$	$27.94\pm0.48\ ^{c}$	
PCSL	90.27 ± 1.45 $^{\rm c}$	$30.75\pm1.11~^{c}$	$34.27\pm0.35^{\:d}$	
S-CO ₂	413.10 ± 1.79 d	n.a.	n.a.	
Ascorbic acid*	$2.00\pm0.01~^{a}$	-	-	
Propyl gallate*	-	1.00 ± 0.02 $^{\text{a}}$	1.00 ± 0.02 $^{\rm a}$	

Photo from Saxifraga--Ed Stikvoort

Data were expressed as mean \pm S. E. M. (n=3). Different letters along column (DPPH) or between columns (β -carotene bleaching test) indicate statistically significant differences at *P* < 0.05 (Bonferroni post-hoc test). N.a. = not active. * Positive controls.

Cellular phototoxicity

Human melanoma C32 cell line

- Samples in *Hanks' Balanced Salt Solution* (HBSS, pH 7.2)
- 30 min incubation
- Irradiation at 365 nm 1 h, 1.08 J/cm^2
- Cell viability 48h later: MTT test
- Unirradiated microtiter plates
- Positive control: Bergapten

Marrelli M. *et al. Food Chem Toxicol* **2012**, *50*, 726-733. Marrelli M. *et al. Pharm Biol* **2014**, *52* 909-918.

Photocytotoxic activity

Sample	IC ₅₀ (μg/mL)			
	Irradiated	Unirradiated		
TM	27.95 ± 0.67 ^c	> 100		
PCSL	25.90 ± 1.23 ^c	> 100		
S-CO ₂	$4.91\pm0.15~^{\rm b}$	> 100		
Bergapten*	0.191 ± 0.012 a	n.d.		

Data were expressed as mean \pm S. E. M. (n=4). Different letters indicate statistically significant differences at *P* < 0.05 (Bonferroni post-hoc test). n.d.: not detectable.

* Positive control.

Concentration-dependent photocytotoxic effects. *** P < 0.001 compared to control (Dunnett's test).

Photocytotoxic activity

Sample	IC ₅₀ (μg/mL)			
	Irradiated	Unirradiated		
TM	27.95 ± 0.67 ^c	> 100		
PCSL	25.90 ± 1.23 ^c	> 100		
S-CO ₂	$4.91\pm0.15~^{b}$	> 100		
Bergapten*	0.191 ± 0.012 a	n.d.		

Data were expressed as mean \pm S. E. M. (n=4). Different letters indicate statistically significant differences at p < 0.05 (Bonferroni post-hoc test). * Positive control. n.d.: not detectable.

Morphological changes in C32 cells induced by photocytotoxic *C. ferulacea* (L.) extracts

Photocytotoxicity and dark toxicity. *** *p* < 0.001 compared to control (Dunnett's test). ### compared to cytotoxic effects in the dark

Photocytotoxic activity

Sample	IC ₅₀ (μg/mL)		
	Irradiated	Unirradiated	
TM	27.95 ± 0.67 c	> 100	
PCSL	25.90 ± 1.23 ^c	> 100	
S-CO ₂	$4.91\pm0.15~^{\rm b}$	> 100	
Bergapten*	0.191 ± 0.012 $^{\text{a}}$	n.d.	

Data were expressed as mean \pm S. E. M. (n=4). Different letters indicate statistically significant differences at *p* < 0.05 (Bonferroni post-hoc test). * Positive control. n.d.: not detectable.

Morphological changes in C32 cells induced by photocytotoxic *C. ferulacea* (L.) Calest. extract

Concentration (µg/mL)

Photocytotoxicity and dark toxicity. *** *p* < 0.001 compared to control (Dunnett's test). ### compared to cytotoxic effects in the dark

Immunoblotting Analysis: TM and PCSL

IECPS

Western Blot analysis of Cyclin D1, p53, p21 and PARP (poly ADP-ribose polymerase) protein levels in C32 cells treated or not with TM and PCSL extracts, both in the presence and absence of UV. The histograms refer to the densitometric analysis (OD) of the Western blot shown in the figure.

Immunoblotting Analysis: S-CO₂

Western Blot analysis of Cyclin D1, p53, p21 and PARP (poly ADP-ribose polymerase) protein levels in C32 cells treated or not S-CO2 extracts, both in the presence and absence of UV. The histograms refer to the densitometric analysis (OD) of the Western blot shown in the figure.

Conclusions

Future perspectives

- C. *ferulacea* extracts, mainly the S-CO₂ sample, contain important photoactive constituents responsible for their photocytotoxic activity.
- Extracts induced cytotoxic effects on melanoma cells upon irradiation with UVA light.

• Future studies could be useful to further optimize the extraction method and to continue investigating the interesting photobiological properties of this species.

Research group

Prof. G. Statti

Prof. F. Conforti

Prof. M.L. Panno

Dr. F. Giordano

Dr. M. R. Perri

Dr. V. Amodeo

Dr. M. Marrelli

