[A0007]

Convenient synthesis of some methyl-N-[2-(6-oxo-3-p-tolyl-5,6-dihydro-4H-pyridazin-1-yl)acetamide]alkanoates

S. M. El Rayes

Department of Chemistry, Faculty of Science, Suez Canal University, Ismailia, Egypt E-mail: samir_elrayes@yahoo.com

Abstract:

An efficient *one-pot* synthesis of methyl-*N*-[2-(6-oxo-3-p-tolyl-5,6-dihydro-4H-pyridazin-1-yl)-acetamide]alkanoates **5a-j** and dipeptides **8a-f** was successfully realized starting from amino acid esters **4** and azides **3**, **7**, respectively. The hydrazide **6a** was further reacted with selected aldehydes to give the corresponding hydrazones **9a-c**.

Keywords: amino acids, dipeptide, azide coupling, dihydro-2H-pyridazin-3-one, hydrazones.

Introduction

Pyridazines represent an important class of biologically active compounds. Recently, a substantial number of 6-aryl-3-(2*H*)-pyridazinones have been reported to possess antimicrobial^{1,2}, potent analgesic³, anti-inflammatory³⁻⁷, antifeedant⁸, herbicidal⁹, antihypertensive¹⁰⁻¹² and antiplatelet activities¹³⁻¹⁵, anticancer effects¹⁶ and other anticipated biological¹⁷ and pharmacological properties^{18,19}. Besides, arylsubstituted 4,5-dihydro-3(2*H*)-pyridazinones such as imazodan **I** are reported to show ionotropic properties comparable to milrinone and amrinone **II**. Emorfazone (4-ethoxy-2-methyl-5-morpholino-3(2*H*)-pyridazinone) **III** is an analgesic and anti-inflammatory compound marketed as pentoil and nandron²⁰⁻²³.

Also, a series of benzyl pyridazinones **IV** were evaluated as HIV-1 non-nucleoside reverse transcriptase inhibitors (NNRTIs)²⁴. Several members of this series showed good

activity against the wild-type virus and NNRTI resistant viruses. Crystal structures of inhibitors bound to HIV-RT demonstrated that the pyridazinones V interact with the protein backbone through a pair of hydrogen bonds between the amide of the K103 amino acid and the N-NH acceptor–donor motif of the pyridazinone. Inspection of the small molecule crystal structures of the inhibitors themselves revealed that in the solid state the pyridazinones were associated through extensive aromatic stacking interactions²⁵.

Figure 1. Biological active pyridazinones

In this paper, we describe the development of a new series of dihydro-2*H*-pyridazin-3one derivatives, whose chemical modifications include *N*-terminal coupled amino acid and dipeptide derivatives as HIV-1 non-nucleoside reverse transcriptase inhibitors (NNRTIs).

Results and Discussion:

The synthesis of new amino acid derivatives coupled with biologically active heterocyclic moieties such as triazole quinazoline²⁶ and quinoline²⁷ attracted our attention. In this work we studied 6-p-tolyl-4,5-dihydro-2H-pyridazin-3-one (1) as biologically active heterocyclic moiety. The hydrazide 2 could be prepared by regioselective N alkylation for 1 with ethylbromoactetate which subsequently

hydrazinolyzed *via* hydrazine hydrate (Scheme 1). The procedures of those steps were already established in literature²⁸⁻³⁰.

Scheme 1

The acyl azide route is one of the first developed for peptide coupling by Curtius³¹. The synthesis of the target amino acid derivatives **5a-j** were efficiently formed *via* azide coupling method,^{26,27,32-34} which was reported to minimize the degree of racemization in amino acid coupling. The *in situ* generated azide **3** solution in ethyl acetate reacted with amino acid methyl ester hydrochloride **4** in the presence of triethyl amine to afford methyl-*N*-[2-(6-oxo-3-p-tolyl-5,6-dihydro-4H-pyridazin-1-yl)-acetamide]alkanoates **5a-j** in good yield. Further development of azide coupling was obtained by the synthesis of *N*-

substituted dipeptide derivatives **8a-f**. Thus, boiling the amino acid ester derivatives **5a,b** (β-Ala, Gly) with hydrazine hydrate gave acyl hydrazide **6a,b** (Scheme1).

Nitrosation of acyl hydrazide **6a,b** finally gave the acyl azide **7a,b** by treatment with NaNO₂ and HCl mixture. The *in situ* generated azides solution **7a,b** in ethyl acetate reacted with amino acid methyl esters hydrochloride **4** in the presence of triethyl amine produced dipeptide derivatives **8a-f** in good yield, scheme 2.

Various *N*-acylheteroarylhydrazones (NAH) have been synthesized and were found to possess very interesting biological activities^{33,35}. The Glycyl hydrazide **6a** was condensed with aldehydes and 2-acetyl furan to exhibit the hydrazone **9a-c** (Scheme 2).

Scheme 2

The structure assignment of the *N*-substituted amino acid esters **5a-j**; acyl hydrazide **6**; the *N*-substituted dipeptides **8a-f** and acyl hydrazones **9a-c** is based on ¹H NMR spectral and physicochemical analysis, Figure 2.

The ¹H NMR spectra clearly confirm the regioselective *N*-alkylation for all isolated products. Thus, the ¹H NMR spectrum of **5a** gave a singlet signal at 4.51 ppm typically associated with NCH₂. Furthermore, a multilplet, a triblet, and two singlet signals at 3.49-3.46, 2.51, 3.55 and 6.63 ppm associated with two CH₂, OMe and NH groups, respectively. Also, the ¹H NMR spectra of all compounds showed two triplets at 2.64 and 3.01 ppm associated with the two CH₂ groups of the pyridazine skeleton.

The ¹H NMR spectrum of the *N*-substituted dipeptide **8f** exhibits signals at δ 2.83-2.81, 3.80-3.78, 4.09, 6.83 and 8.97 ppm corresponding to functionalities found at the dipeptide chain; two CH₂ (β-alaninyl residue), CH₂ (glycyl residue) and two NH groups, respectively.

Figure 2. Selected ¹H NMR of compounds 5a and 8f.

The ¹H NMR spectrum of **9a** in DMSO gave two D₂O exchangeable broad signals at δ 11.32 and 8.32 ppm with similar intensities, in addition to two D₂O exchangeable broad signals at δ 11.42 and 3.84 ppm with larger intensities. We might conclude that the hydrazone **9a** solution in DMSO is present in the form of two tautomers (structure A) and (structure B)²⁶ with intramolecular hydrogen bonds of the type N–H···N=C stabilizing each form in 1:2. ratio, respectively. The participation of the NH group in the N–H···N=C system is confirmed by a signal at δ 11.32 (structure A). Structure B is induced by enolization of the hydrazide carbonyl which gave a signal at δ 11.42 and 3.84 ppm corresponding to NH group and an exocyclic OH group, respectively.

References

- Sayed, G. H.; Sayed, M. A.; Mahmoud, M.R.; Shaaban, S. S. Egypt. J. Chem. 2002, 45, 767.
- 2. Katrusiak, A.; Katrusiak, A.; Baloniak, S. Tetrahedron 1994, 50, 12933.
- Okcelik, B.; Unlu, S.; Banoglu, E.; Kupeli, E.; Yesilada, E.; Sahin, M.F. Arch. Pharm. Pharm. Med. Chem. 2003, 336, 406.
- 4. Dogruer, D. S.; Sahin, M. F.; Kupeli, E.; Yesilada, E. Turk. J. Chem. 2003, 27, 727.
- Frolov, E. B.; Lakner, F. J.; Khvat, A. V.; Ivachtchenko, A. V. Tetrahedron Lett. 2004, 45, 4693.
- Banoglu, E.; Akoglu, C.; Unlu, S.; Kupeli, E.; Yesilada, E.; Sahin, M.F.. Arch. Pharm. Pharm. Med. Chem. 2004, 337, 7.
- 7. Gokce, M.; Dogruer, D.; Sahin, M. F. Il Farmaco 2001, 56, 233.
- 8. Cao, S.; Qian, X.; Song, G.; Chai, B.; Jiang, Z. J. Agric. Food Chem. 2003, 51, 152.
- 9. Piaz, V. D.; Ciciani, G.; Giovannoni, M. P. Synthesis 1994, 669.
- 10. Ogretir, C.; Yarligan, S.; Demirayak, S. J. Chem. Eng. Data 2002, 47, 1396.
- Barbaro, R.; Betti, L.; Botta, M.; Corelli, F.; Giannaccini, G.; Maccari, L.; Manetti, F.; Strappaghetti, G.; Corsano, S. J. Med. Chem. 2001, 44, 2118.
- 12. Sircar, I. J. Heterocyclic Chem. 1985, 22, 1045.
- Coelho, A.; Sotelo, E.; Fraiz, N.; Yanez, M.; Laguna, R.; Cano, E.; Ravina, E. Bioorg. Med. Chem. Lett. 2004, 14, 321.
- 14. Sotelo, E.; Centeno, N. B.; Rodrigo, J.; Ravina, E. Tetrahedron Lett. 2002, 58, 2389.
- Sotelo, E.; Fraiz, N.; Yanez, M.; Terrades, V.; Laguna, R.; Cano, E.; Ravina, E. Bioorg. Med. Chem. 2002, 10, 2873.
- 16. Malinka, W.; Redzicka, A.; Lozach, O. Il Farmaco 2004, 59, 457.
- Youssef, A. S.; Marzouk, M. I.; Madkour, H. M. F.; El-Soll, A. M. A.; El-Hashash, M. A. Can. J. Chem. 2005, 83, 251.
- 18. Sotelo, E.; Pita, B.; Ravina, E. Tetrahedron Lett. 2000, 41, 2863.
- 19. Sotelo, E.; Coelho, A.; Ravina, E. Chem. Pharm. Bull. 2003, 51, 427.
- 20. Deniz, S. D.; M. Fethi, S.; Esra, K.; Erdem, Y. Turk. J. Chem. 2003, 27, 727.

- Beata, D. H.; Katrien, M.; Oliver, E.; Laszlo, K.; Pal Tapolcsanyi; Bert, U. W. M.; Zsuzsanna, R.; Gyorgy, H.; Roger A. D.; Guy, L. F. L.; Janez, K.; Peter M. *Tetrahedron* 2004, 60, 2283.
- 22. Karolin, A.; Annegret, T.; Nicolle, S.; Matthias, B. Tetrahedron Letters 2008, 49, 4607.
- 23. Samar, A. A. Molecules 2007, 12, 25.
- Zachary, K. S.; Dunn, J. P.; Li, Y.; Heilek, G.; Dunten, P.; Elworthy, T. R.; Han, X.; Harris, S. F.; Hirschfeld, D. R.; Hogg, J. H.; Huber, W.; Kaiser, A.; Kertesz, D. J.; Kim, W.; Roepel, T.; Irzadegan, M. G.; Saito, Y. D.; Silva, T. M. P. C.; Swallow, S.; Tracy, J. L.; Villasenor, A.; Vora, H.; Zhou, A. S.; Klumpp, K. *Bioorg. Med. Chem. Lett.* 2008, 18 (15), 4348.
- Zachary K. S., James, P. D.; Li, Y; Gabrielle, H.; Pete, D.; Todd, R. E.; Xiaochun, H.; Seth, F. H.; Donald, R. H.; J. Heather, H.; Walter, H.; Ann C. K.; Denis, J. K.; Woongki, K.; Taraneh, M.; Michael, G. R.; Y. David, S.; Tania, M. P. C. S.; Steven, S.: Jahari, L.; Tracy, *et al. Bioorganic & Medicinal Chemistry Letters*, 2008, 18, (15)4352.
- 26. Fathalla, W.; El Rayes, S. M.; Ali, I. A. I. ARKIVOC 2007, (xvi), 173.
- 27. Ali, I. A. I.; Fathalla, W.; El Rayes, S. M. ARKIVOC 2008, (xiii), 179
- Kolobov, A. V.; Panfilov, S. T.; Hohlev, A. L.; Borisov, P. V.; Krasovska, G. G.; Smirnov, A. A.; Sharova, A. I.; Kofanov, E. R. *Izvestiya Vysshikh Uchebnykh* Zavedenii, Khimiyai Khimicheskaya Tekhnologiya 2006, 49(3), 24.
- 29. Sayed, A. A.; Jahine, H.; Zaher, H. A.; Sherif, O. *Indian Journal of Chemistry* **1975**, *13(11)*, 1142.
- 30. Kane, J. M.; Huber, E. W.; Miller, F. P.; Kehne, J. H. Pharmazie 1992, 47(4), 249.
- 31. Curtius, Th. Berichte der Deutschen Chemischen Gesellschaft 1902, 35, 3226.
- 32. Fathalla, W.; Ali, A. I. Heteroatom Chemistry 2007, 18, 637.
- Ali, I. A. I; Al-Masoudi, I. A.; Saeed, B.; Al-Masoudi, N. A.; La Colla, P. Heteroatom Chemistry 2005, 16, 148.
- 34. El Rayes, S. M.; Ali, I. A. I.; Fathalla, W. ARKIVOC 2008, (xi), 86.
- Todeschini, A. R.; Miranda, A. L. P.; Silva, K. C. M.; Parrini, S. C.; Barreiro, E. J. *Eur. J. Med. Chem.* 1997, 33, 189.

