Elliot Coulbeck and Jason Eames*

Parallel Kinetic Resolutions (PKRs) involves the parallel separation of enantiomers under kinetic control as outlined in Scheme $1 .{ }^{1}$

We have recently reported the parallel kinetic resolution of racemic oxazolidinone (rac)-4 using a combination of quasienantiomeric active esters (S)-5 and (R)-6 (Scheme 2). ${ }^{2}$ These processes proceeded efficiently to give separable diastereoisomeric adducts (S, R)-syn-7 and (R, S)-syn-8 in good yields with excellent levels of stereocontrol (>90\% d.e.) (Scheme 2).

Preliminary MKR study
Probing Different Active Esters
We now report an extension of this methodology
towards the resolution of 1-phenylethanol (rac)-1 towards the resolution of 1 -phenylethanol (rac)
using an equimolar combination of active esters. ${ }^{3}$

For this study, we chose to use lithium 1 phenylethoxide [formed by addition of t-BuLi to 1 phenylethanol (rac)-1] as our nucleophilic source of 1 phenylethanol. Under our standard mutual kinetic conditions, addition of lithium 1-phenylethoxide (rac) to a solution of active ester (rac)-6, gave an inseparable mixture of esters (rac)-anti- and syn-9 in 72% yield with poor diastereoselection (24% d.e.) (Scheme 3: Entry 1). However, the diastereocontrol was found to improve significantly by the simple
addition of ZnCl_{2} from 24% d.e. to 94% d.e (Scheme addition of ZnCl_{2} from 24% d.e. to 94% d.e (Scheme 3: Entry $\rightarrow \rightarrow 4$). The optimum amount required was equivalents 1-phenylethanol Znl_{2} and t BuLi and 10 equivalents 1-phenylethanol.

PKR of 1-Phenylethanol

With this information at hand, we turned our attention to probing the use of structurally related active esters (Schemes 4 and 5). From this study, it was shown that the substitution pattern of the aryl ring had little or no effect on the stereochemical outcome of these processes.

We next chose to investigated the parallel kinetic resolution (PKR) of 1-phenylethanol (rac)-1 using an equimolar combination of active esters (R)-5 and ((S) - 6 which were known to be separable \{by flash column chromatography - ΔR_{F} [light petroleum $40-60^{\circ} \mathrm{C}$: diethyl ether $(9: 1)]=0.19\}$. This resolution proceeded efficiently to give esters anti- and syn-9 in 77% yield with 86% d.e. (93:7) and anti- and syn-16 in 76% yield with 88% d.e. (94:6).

Access to the resolved 1-phenylethanol 1 was achieved by simple LiAlH_{4} reduction of esters 9 and 16 to give (R) - and (S)-1-phenyethanol 1 in good yield (Scheme 7). We are currently studying the mechanism of this process and the outcomes will be reported in due course.

Reduction of the Esters

Conclusion and Acknowledgments

We have shown that 1 -phenylethanol 1 can be resolved efficiently using a combination of quasi-enantiomeric efficiently using a combination of quasi-enantiomeric phenylethanol 1 in 86% e.e. ${ }^{4}$

We would like to thank the EPSRC for a studentship (to E.C.).

References

1. Vedejs, E.; Chen, X. J. Am. Chem. Soc. 1997, 119, 2584
2. Boyd, E; Coulbeck, E.; Coumbarides, G, S; Chavda, S Dingjan, M; Eames, J; Flinn, A; Motevalli, M; Northen, J Yohannes, Y. Tetrahedron Asymmetry, 2007, 18, 2515.
3. Coulbeck, E; Eames, J. Tetrahedron Asymmetry, 2007, 18 2313.
4. Coulbeck, E; Eames, J. Synlett, 2008, 333
