

FROM MOLECULES TO NETWORKS

A probability problem suitable for Problem-Based Learning

J. L. González-Santander ${ }^{a}$
${ }^{a}$ Department of Mathematics. Universidad de Oviedo, 33007 Asturias, Spain

Introduction

Problem If we choose a sequence of m natural numbers, $a_{1}, a_{2}, \ldots, a_{m}$, at random, such that $1 \leq a_{i} \leq n$, what is the probability to obtain $a_{1} \leq a_{2} \leq \cdots \leq a_{m}$?

Results and Discussion

In https://doi.org/10.46583/nereis 2021.13.782, the solution to the problem is derived with the aid of Graph Theory, Linear Algebra and hypergeometric sums, to finally obtain,

$$
p=\frac{(n+m-1)!}{m!(n-1)!n^{m}} .
$$

The above result suggests the following shortcut to the solution. Indeed, according to the solution, we see that the number of favorable events f coincide with the combinations with repetition formula $C R_{n}^{m}$, i.e. the number of combinations of n elements taken m at a time, allowing repetition of elements [3, Sect. 6.2],

$$
f=\binom{m+n-1}{m}=C R_{n}^{m} .
$$

To show this coincidence, consider that we have n different natural numbers: $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$, where $\forall i, \alpha_{i} \leq n$, and then chose m of these numbers, allowing repetition. The number of the different selections we can make is given by the combination of repetition formula, as aforementioned. Define as the number of times you have chosen number $n\left(\alpha_{k}\right)$. For instance, taking $n=3$ and $m=6$, a possible combination is,

α_{1}	α_{2}	α_{3}
\mathbf{x}	$\mathbf{x x}$	$\mathbf{x x x}$

where $n\left(\alpha_{1}\right)=1, n\left(\alpha_{2}\right)=2, n\left(\alpha_{3}\right)=3$. Now, order the natural numbers α_{k} in such a way that if $n\left(\alpha_{i}\right) \geq n\left(\alpha_{j}\right)$ then $\alpha_{i}<\alpha_{j}$. Therefore, in the above example, we have

3	2	1
\mathbf{x}	$\mathbf{x x}$	$\mathbf{x x x}$

That is to say, we have the combination: 1-1-1-2-2-3. Obviously, this combination is one of the possible favored events in the initial problem, thus the number of all these favored events is given by the combinations with repetition formula.
It is worth noting that if the restriction of the problem is $a_{1}<a_{2}<\cdots<a_{m}$, then the favored events are given by the number of combinations formula, i.e.

$$
f=C_{n}^{m}=\binom{m}{n} .
$$

References

[1] Boud D, Feletti G. The Challenge of Problem-Based Learning. London: Psychology Press; 1997.
[2] Laplace PS. Essai philosophique sur les probabilités. 5th ed. Cambridge: Cambridge University Press; 2009.
[3] Brualdi RA. Introductory to Combinatorics. 5th. ed.: Pearson Educational; 2009.
[4] Anton H, Rorres C. Elementary Linear Algebra. 9th ed.: John Wiley \& Sons; 2005.
[5] Andrews GE, Askey R, Roy R. Special Functions. Encyclopedia of Mathematics 71.
Cambridge: Cambridge University Press; 1999.
[6] Oldham K, Myland J, Spanier J. An Atlas of Functions. 2nd ed.

