

Fundação para a Ciência e a Tecnologia

New antitumor Ru-based compound derivatives optimized using in silico methods

Inês D. S. Pires^a, Tânia S. Morais^b, Miguel Machuqueiro^a ^a BiolSI - Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Ed. C8, Lisboa, Portugal. ^b Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal.

Cancer has become one of leading causes of death around the globe, with female breast cancer as one of the most prevalent. Among the multiple types of breast cancer (BC) identified to date, the triple-negative (TN) subtype (lacking expression of estrogen and progesterone receptors and human epidermal growth factor receptor 2) is associated with higher aggressiveness and poor prognosis^[1]. TNBC lacks targeted therapies and presents heterogeneous responses to treatment with traditional cisplatin-like drugs, in part due to the development of multidrug resistance (MDR). TM34 is a Ruthenium-based compound that has been suggested to be a more efficient and selective therapy than cisplatin^[2]. More recently, new derivatives of TM34 have been developed with increased selectivity by adding peptide sequences that are recognized by receptor proteins from the FGFR family^[3].

The main goal of this work is to study the interaction of several TM34 derivatives with a membrane model (POPC) and to calculate their membrane crossing energy profiles that can be used to estimate the membrane permeability coefficients. We used Molecular Dynamics simulations coupled with an Umbrella-sampling scheme to obtain the potential of mean force profiles, which allowed the calculation of the membrane permeability using the inhomogeneous solubility-diffusion model^[4].

- [1] Rakha EA, Ellis IO. Triple-negative/basal-like breast cancer: review. Pathology. 2009;41: 40-47.
- [2] Lin K, Zhao Z-Z, Bo H-B, Hao X-J, Wang J-Q. Applications of Ruthenium Complex in Tumor Diagnosis and Therapy. Front Pharmacol. 2018;9: 1323.
- [3] Machado JF, Machuqueiro M, Marques F, Robalo MP, Piedade MFM, Garcia MH, et al. Novel "ruthenium cyclopentadienyl"--peptide conjugate complexes against human FGFR (+) breast cancer. Dalton Trans J Inorg Chem. 2020;49: 5974–5987.
- [4] Dickson CJ, Hornak V, Pearlstein RA, Duca JS. Structure-Kinetic Relationships of Passive Membrane Permeation from Multiscale Modeling. J Am Chem Soc. 2017;139: 442–452.

Acknowledgements: We acknowledge Fundação para a Ciência e Tecnologia (FCT) for funding through projects UIDB/00100/2020 (CQE), UIDB/04046/2020 & UIDP/04046/2020 (BioISI), and PTDC/QUI-QIN/0146/2020. T.S. Morais and M. Machuqueiro thank the CEECIND 2017 Initiative for projects CEECIND/00630/2017 and CEECIND/02300/2017, respectively (acknowledging FCT, as well as POPH and FSE-European Social Fund).