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Abstract: From the band calculation, the copper d-orbital band formed slightly above the valence 11 
band maximum would function as an acceptor level promoting the generation of carriers. In addi- 12 
tion, the excitation processes from the p-orbital of iodine and the d-orbital of copper to the s-orbital 13 
of sodium could suppress carrier recombination. Total energy calculations showed that, the stability 14 
of the crystal structure decreases with the addition of copper and sodium, but increases with the 15 
addition of ethylammonium. Therefore, it is expected that the combination of these compounds can 16 
compensate for the disadvantage of unstable crystal structure. The calculated results could be ob- 17 
tained by optimizing the composition of the perovskite and the annealing conditions. 18 
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1. Introduction 22 
There have been many investigations to improve the conversion efficiency and dura- 23 

bility of devices by adding compounds to the perovskite precursor solution, and these are 24 
still being actively researched. In this study, copper (Cu), sodium (Na) and ethylammo- 25 
nium (EA) were focused on. Cu compounds are mainly used as hole transport materials, 26 
such as copper thiocyanate (CuSCN) and copper oxide (CuO or Cu2O), which are ex- 27 
pected to be stable inorganic hole transport materials that can replace organic hole 28 
transport materials [1-5]. Many studies have been reported on the addition of alkali metals 29 
to perovskite precursor solutions [6-11], but relatively few studies have been reported on 30 
the addition of copper [12-15]. A previous study reported that the addition of CuBr2 and 31 
NaCl to perovskite precursor solutions improved the conversion efficiency and durability 32 
of the devices [16-17]. In that study, it was reported that the lattice distortion of perovskite 33 
crystals was reduced by the addition of a small quantity of Cu, and the lattice defects were 34 
suppressed by the transfer of Na to the lattice defect sites after the desorption of me- 35 
thylammonium (MA), which led to the enhanced conversion efficiency and durability of 36 
the devices. 37 

In addition to the experimental investigation of the addition effect, the analysis using 38 
first-principles calculations has been actively studied. CH3NH3PbI3 is known as the most 39 
general perovskite used as a photoelectric conversion material. First-principles calcula- 40 
tions using a structural model in which organic cations, metal cations, and halogen anions 41 
are substituted by other molecules or atoms can be used to estimate the stability of the 42 
crystal structure. In a previous study reported in 2019, first-principles calculations 43 
showed that substituting EA for MA enhanced the stability of the crystal structure [18]. 44 
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The calculated energy gap values were agreed well with the experimental values, and the 1 
correspondence between the calculated and experimental results indicates that the addi- 2 
tion effect can be estimated by first-principles calculations. There have been other at- 3 
tempts to improve the properties of devices by substituting MA with larger organic cati- 4 
ons [19-24]. Furthermore, numerous studies on the effects of halogen additions have been 5 
conducted, both computationally and experimentally [25-29]. The selectivity of the halo- 6 
gen is very important because the energy gap and the crystallinity of the perovskite film 7 
changes for halogen. 8 

The purpose of this study is to investigate the addition effects of Cu, Na and EA using 9 
experimental characterization and first-principles calculations. Co-addition of Cu and Na 10 
enhanced the JSC, VOC, and FF, resulting in higher conversion efficiency. This result is at- 11 
tributed to the enhancement of carrier generation by Cu addition and the suppression of 12 
carrier loss by Na addition. The properties are expected to be further improved by using 13 
other organic cations or alkali metals, or by optimizing the experimental conditions. 14 

2. Experimental procedures and calculation 15 
Detailed fabrication processes were described in the previous works [30-33]. F-doped 16 

tin oxide (FTO) substrates were cleaned in an ultrasonic bath with acetone and methanol 17 
and dried under nitrogen gas. The 0.15 M TiO2 precursor solution was spin-coated on the 18 
FTO substrate at 3000 rpm for 30 s, and the coated substrate was then annealed at 125 °C 19 
for 5 min. The 0.30 M TiO2 precursor solution was spin-coated on the TiO2 layer at 3000 20 
rpm for 30 s, and the resulting substrate was annealed at 125 °C for 5 min. The process to 21 
form the 0.30 M precursor layer was performed twice. Then, the FTO substrate was sin- 22 
tered at 550 °C for 30 min to form a compact TiO2 layer. To form the mesoporous TiO2 23 
layer, a TiO2 paste was prepared from the TiO2 powder with poly(ethylene glycol)in ul- 24 
trapure water. The solution was mixed with acetylacetone and Triton X-10 for 30 min. 25 
Then, the TiO2 paste was spin-coated on the compact TiO2 layer at 5000 rpm for 30 s. The 26 
resulting cell was annealed at 550 °C for 30 min to form the mesoporous TiO2 layer. 27 

To prepare the perovskite compounds, mixed solutions of CH3NH3I (2.4 M, Showa 28 
Chemical, Tokyo, Japan) and PbCl2 (0.8 M, Sigma-Aldrich, St. Louis, MO, USA) in N,N- 29 
dimethylformamide (DMF, Sigma-Aldrich, 0.5 mL) were prepared for the standard cell. 30 
Pb or MA in the perovskite structure was expected to be substituted by Cu, Na or EA, 31 
respectively. These perovskite solutions were then introduced into the TiO2 mesopores by 32 
spin-coating at 2000 rpm for 60 s, which is followed by annealing in air. During the spin- 33 
coating, a hot air-blowing method was applied. Temperatures of the cells during the air- 34 
blowing were set at 90 °C. A polysilane solution was prepared by mixing chlorobenzene 35 
(Fujifilm Wako Pure Chemical Corporation, 0.5 mL) with decaphenylcyclopentasilane 36 
(DPPS, Osaka Gas Chemicals, OGSOL SI-30-10, 10 mg). During the last 15 s of the third 37 
spin-coating of the perovskite precursor solutions, the DPPS solution was also spin-coated 38 
on the perovskite layer [34-37]. The annealing temperature was gradually increased from 39 
90 °C until the entire film turned black [38]. 40 

A solution of spiro-OMeTAD in chlorobenzene was mixed with a solution of lithium 41 
bis(tri-fluoromethylsulfonyl)imide in acetonitrile and tris(2-(1H-pyrazol-1-yl)-4-tert-butyl 42 
pyridine)cobalt(III) tri[bis(trifluoromethane)sulfonimide] in acetonitrile (0.5 mL) for 24 h. 43 
The former solution with 4-tertbutylpyridine was mixed with the Li-TFSI solution and 44 
FK209 solution (0.004 mL) for 30 min at 70 °C. Then, the spiro-OMeTAD solution was 45 
spin-coated on the perovskite layer at 4000 rpm for 30 s. All procedures were performed 46 
in ambient air. Finally, gold (Au) electrodes were evaporated as top electrodes using a 47 
metal mask for the patterning. 48 

First principle calculations of all structures were performed within the generalized 49 
gradient approximation in the form of the Perdew-Burke-Ernzerhof exchange-correlation 50 
functional using Quantum Espresso. The cut-off energy of the planar wavefunction was 51 
set to 80 eV for the structural optimization and to 25 eV for the other calculations. 4 × 4 × 52 
4 k-point mesh was used for calculations of all structures. 53 
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3. Results and discussion 1 
The band structure, partial density of states and parameters were obtained by first- 2 

principles calculations. The total substitution structure model used in the calculations is 3 
shown in Fig. 1. The energy gap increases when iodine is substituted with bromine or 4 
chlorine compared to MAPbI3, which is the most general perovskite used as a photoelec- 5 
tric conversion material. In general, an increase in the energy gap may lead to an increase 6 
in the open-circuit voltage, therefore, the use of bromide or chloride as an additive may 7 
improve the open-circuit voltage. 8 

 9 
Figure 1. Structure models of (a) MAPbI3, (b) MAPbBr3. 10 

The total energy per cell of the structural model is obtained by first-principles calcu- 11 
lations, and a smaller value means that the crystal structure is more stable. Since the total 12 
energy decreases by substituting iodine with bromine or chlorine, the crystal structure is 13 
expected to be stabilized. The result that the addition of EA improves the stability of the 14 
crystal structure is in good agreement with previous studies.  15 

Calculations for the partial substitutional structure model were also performed [39- 16 
41]. The partial substitution structure model used in the calculations is shown in Fig. 2. 17 
Compared to the total substitutional structure model, the partial substitutional structure 18 
model contains more atoms, and thus requires a longer time for calculation. In contrast to 19 
MA0.875EA0.125PbI3, the addition of copper resulted in the formation of a shallow band of 20 
Cu d-orbitals slightly above the band of iodine p-orbitals, decreasing the energy gap and 21 
the mobility of holes. Furthermore, comparing MA0.875EA0.125Pb0.875Cu0.125I3 and 22 
MA0.750EA0.125Na0.125Pb0.875Cu0.125I3, by substituting Na for a part of MA, a band of Na s or- 23 
bitals is formed slightly above the conduction band minimum, which results in a slight 24 
increase in electron mobility. The energy gap is increased by substituting some of the io- 25 
dine with bromine, and this result is in good agreement with the calculated results of the 26 
total substitution structure model. 27 

 28 
Figure 2. Partial substitution structure models of (a) MA0.875EA0.125PbI3 and (b) 29 
MA0.875EA0.125Pb0.875Cu0.125I3. 30 
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 In the calculated results of the partial substitution structure model, it is indicated 1 
that the addition of Cu forms a shallow band of Cu d-orbitals slightly above the band of 2 
iodine p-orbitals, which reduces the energy gap and decreases the hole mobility. How- 3 
ever, if we consider the Cu d-orbital band as an acceptor level, it may have a positive effect 4 
on the performance of the device. 5 

The current-voltage (J-V) curve and the external quantum efficiency (EQE) obtained 6 
from the present perovskite photovoltaic devices. From the calculated results of the partial 7 
substitution structure model, it was expected that the addition of Cu would decrease the 8 
energy gap and reduce the hole mobility. However, from the measured results, the co- 9 
adding of Cu and Na slightly increased the energy gap and further enhanced the short- 10 
circuit current density, open-circuit voltage, and fill factor, resulting in higher conversion 11 
efficiency. Therefore, the Cu d-orbitals are considered to function as acceptor levels. 12 

4. Conclusion 13 
 In this study, the effects of co-addition of Cu, Na and EA into the perovskite precur- 14 
sor solution were investigated using the first-principles calculations. The addition of these 15 
additives to the perovskite precursor solution increased the energy gap and improved the 16 
open circuit voltage in all devices compared to the standard system. According to first- 17 
principles calculations, replacing all of the iodine with bromine or chlorine increased the 18 
energy gap, indicating that the improvement in VOC was due to the effect of halogen. When 19 
some of the lead was substituted with Cu, a shallow band of Cu d-orbitals was formed 20 
slightly above the valence band maximum, suggesting that the addition of Cu decreases 21 
the energy gap and reduces the hole mobility. When a small amount of Cu was added in 22 
the experiment, the conversion efficiency decreased slightly, but the energy gap increased 23 
slightly. This suggests that the Cu energy levels of formed in the forbidden band may 24 
function as acceptor levels. The excitation of electrons from the p-orbital of iodine to the 25 
d-orbital of Cu is thought to have promoted the generation of carriers, leading to the im- 26 
provement of JSC. 27 
 28 
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