

The 3rd International Online Conference on Crystals 15–30 JANUARY 2022 | ONLINE

Chaired by PROF. DR. HELMUT CÖLFEN

Physico-chemical interaction in the Ag₂Se–Zn(Cd, Hg, Pb)–SnSe₂ systems

Lyudmyla Piskach^{1,*}, Olga Velychko², Anatoli Fedorchuk³, Yuri Kogut⁴, Ivan Olekseyuk⁵, and Oleg Parasyuk⁶

^{1, 2, 4, 5, 6} Lesya Ukrainka Volyn National University, Department of Chemistry, Ecology and Pharmacy, Lutsk, Voli Ave. 13; ³ Lviv National University of Veterinary Medicine and Biotechnology, Department of Biological and General Chemistry, Lviv, Pekarska St. 50. <u>ft@fm.ua</u>

* Corresponding author: <u>lyuda0760@ukr.net (piskach.lyudmyla@vnu.edu.ua)</u>

Abstract: The formation of quaternary compounds in the $A_2^I X - B^I X - C^{IV} X_2$ systems where $A^I - Cu$, Ag; $B^{II} - Zn$, Cd, Hg; C^{IV} -Si, Ge, Sn; X-S, Se, Te is known for seven component combinations. The most common are the phases with the equimolar ratio of all three binary compounds described by the $A_2^I B^{II} C^{IV} X_4$ formula. These quaternary compounds crystallize in non-centrosymmetric structures and may be of interest for nonlinear optics. The boundary sides of the presented systems Ag_2Se -Zn(Cd, Hg, Pb)- $SnSe_2$ feature only two compounds, Ag_8SnSe_6 (Ag_2Se - $SnSe_2$ system) and Hg_2SnSe_4 (HgSe- $SnSe_2$ system). The Ag_2Se -ZnSe- $SnSe_2$ and Ag_2Se -CdSe- $SnSe_2$ systems contain only one intermediate quaternary compound each, $Ag_2Zn(Cd)SnSe_4$, that form at the non-quasi-binary sections " Ag_2SnSe_3 "-Zn(Cd)Se. The diffraction pattern of Ag_2ZnSSe_4 was indexed in the tetragonal structure of the stannite type Cu_2FeSnS_4 (S.G. *12m*). The structure of the $Ag_2CdSnSe_4$ compound was determined in the orthorhombic symmetry, S.G. $Cmc2_1$. The Ag_8SnSe_6 -Zn(Cd)Se sections of these systems are quasi-binary, of the eutectic type, with large solid solution ranges.

The Ag₂Se–HgSe–SnSe₂ system features at 670 K three intermediate phases, Ag₂HgSnSe₄, Ag₄Hg₃Sn₂Se₉, and Ag₆HgSnSe₆. Ag₂HgSnSe₄ crystallizes in the orthorhombic S.G. *Pmn2*₁. The Ag₄Hg₃Sn₂Se₉ compound crystallizes in the orthorhombic S.G. *Imm*2. This compound has a homogeneity region that is stretched to the ternary compound Hg₂SnSe₄. The Ag₆HgSnSe₆ structure was not investigated.

No quaternary compounds were found in the $Ag_2Se-PbSe-SnSe_2$ system. Ag_8SnSe_6-PbSe is the triangulating section in this system.

Keywords: quaternary chalcogenides; crystal structure; phase equilibria.

Results and Discussion

- The formation of quaternary compounds in the A^I₂X–B^{II}X–C^{IV}X₂ systems where A^I–Cu, Ag; B^{II}–Zn, Cd, Hg; C^{IV}–Si, Ge, Sn; X–S, Se, Te is known for seven component combinations [1]. The most common are the phases with the equimolar ratio of all three binary compounds described by the A^I₂B^{II}C^{IV}X₄ formula. These quaternary compounds crystallize in non-centrosymmetric structures and may be of interest for nonlinear optics. Ag-containing compounds may be of interest due to the possible formation of compounds with high ionic conductivity [2, 3].
- 1. Parasyuk O.V., Piskach L.V., Romanyuk Y.E., Olekseyuk I.D., Zaremba V.I., Pekhnyo V.I., Phase relationa in the quasi-binary Cu₂GeS₃–ZnS and quasi-ternary Cu₂S–Zn(Cd)S–GeS₂ systems abd crystal structure of Cu₂ZnGeS₄. *J. Alloys Compd.* **2005**, 397 (1-2), 85-94.
- Parasyuk O.V., Gulay L.D., Romanyuk Ya.E., Olekseyuk I.D., The Ag₂Se–HgSe–SiSe₂ system in the 0-60 mol. % SiSe₂ region. *J. Alloys Compd.* 2003, 348, 157-166.
- 3. Parasyuk O.V., Gulay L.D., Romanyuk Ya.E., Olekseyuk I.D., Piskach L.V. The Ag₂Se–HgSe–GeSe₂ system and crystal structures of the compounds. *J. Alloys Compd.* **2003**, 351(1-2), 135-144.

Ternary compounds

- Ag_8SnSe_6 (Ag_2Se-SnSe_2 system)
- High-temperature modification of Ag₈SnSe₆ crystallizes in the cubic structure (S.G. *P*4₂32).
- Low-temperature modification crystallizes in the orthorhombic unit cell (S.G. $Pmn2_1$) and is isostructural to β' -Ag₈GeSe₆.
- **Hg₂SnSe₄** (HgSe–SnSe₂ system) crystallizes in the thiogallate structure (defect chalcopyrite, S.G *I* **4**).

Ag₂Se–ZnSe–SnSe₂ and Ag₂Se–CdSe–SnSe₂ systems

The Ag₂Se–ZnSe–SnSe₂ and Ag₂Se–CdSe–SnSe₂ systems contain only one intermediate quaternary compound each, Ag₂ZnSnSe₄ and Ag₂CdSnSe₄ [4]. Each compound has at 670 K a minor homogeneity region stretched along the Ag_{33.3}Sn_{16.7}Se₅₀– Zn(Cd)Se sections. Due to the absence of a ternary compound, the sections are non-quasi-binary in the range of 0-50 mol.% Zn(Cd)Se. Ag₂CdSnSe₄ crystal structure: orthorhombic symmetry, S.G. *Cmc2₁, a*=0.42640(2), *b*=0.73170(3), *c*=0.69842(4) nm, R₁=0.0782) [4].

[4] Parasyuk O.V., Gulay L.D., Piskach L.V., Olekseyuk I.D., The Ag2Se–CdSe–SnSe2 system at 670 K and the crystal structure of the Ag2CdSnSe4 compound. *J. Alloys Compd.*, 2002, 335(1):176-180.

Ag₈SnSe₆–Zn(Cd)Se sections

The Ag8SnSe6–Zn(Cd)Se sections of these systems are quasi-binary, of the eutectic type, with large solid solution ranges of end compounds [5].

[5] Piskach L.V., Parasyuk O.V., Olekseyuk I.D., Romanyuk Ya.E., Volkov S.V., Pekhnyo V.I. Interaction of argyrodite family compounds with the chalcogenides of II-b elements. *J. Alloys Compd.*, **2006**, 421/1-2, 98-104.

Crystal structure of Ag₂ZnSnSe₄

Ag₂Se–HgSe–SnSe₂ system

•The Ag2Se–HgSe–SnSe2 system [6-8] features at 670 K three intermediate phases, Ag2HgSnSe4, Ag4Hg3Sn2Se9 (Ag2.66Hg2Sn1.34Se6), and Ag6HgSnSe6.

•Ag2HgSnSe4 crystallizes in the orthorhombic S.G. Pmn21, with lattice periods a=0.8461(1), b=0.7340(1), c=0.69901(6) nm [6, 7].

•The Ag4Hg3Sn2Se9 compound crystallizes in an orthorhombic unit cell (S.G. *Imm2*, *a*=1.2795(2), *b*=0.42631(6), *c*=0.58207(4) nm) [8].

The structure of AgHgSnSe6 has not been investigated.

Crystals

[6]. Parasyuk O.V., Phase relations of the Ag2SnS3–HgS and Ag33.3Sn16.7Se/Te/50–HgSe/Te/ section in Ag–Hg–Sn–S/Se/Te/ systems. J. Alloys Compd. 1999, 291/1-2 () 215-219.

[7]. Parasyuk O.V., Gulay L.D., Piskach L.V., Kumanska Yu. O. The Ag2Se-HgSe-SnSe2 System and the Crystal Structure of the Ag2HgSnSe4 Compound. J. Alloys Compd. 2002, 339/1-2, 140-143.

[8]. Parasyuk O.V., Gulay L.D., Crystal structure of the Ag2.66Hg2Sn1.34Se6 and Hg2SnSe4 compounds. J. Alloys Compd. 2002, 337/1-2, 94-98.

Ag₂Se–PbSe–SnSe₂ system

No quaternary compounds were found in the Ag₂Se–PbSe–SnSe₂ system. Ag₈SnSe₆–PbSe is the only triangulating section in this system. The alloys in the Ag₈SnSe₆–PbSe–SnSe₂ sub-system are four-phase since the PbSe–SnSe₂ section is non-quasi-binary [9]. Thus, the isothermal section consists of two three-phase fields, Ag₂Se+Ag₈SnSe₆+PbSe and PbSe+SnSe₂+Se (along the PbSe–SnSe₂ line), one four-phase field Ag₈SnSe₆+PbSe+SnSe₂+Se, and contains four two-phase equilibria.

[9]. Dal Corso S., Liautard B., Tedenac J.C. The Pb–Sn–Se System: Phase Equilibria and Reactions in the PbSe–SnSe–Se SubTernary *J. Phase Equilibria*. **1995**, 16, 4, 308-314.

Crystal structure

of the quaternary compound Ag₂ZnSnSe₄

Compound	Ag2ZnSnSe4		
Number of formula units per unit cell	2		
Space group	142m		
Pearson symbol	tI16		
a (nm)	0.60434(2)		
c (nm)	1.13252(5)		
cla	1.874		
Cell volume (nm ³)	0.41363(5)		
Number of atoms in the cell	16.0		
Calculated density (g/cm ³)	5.7454(6)		
Absorption coefficient (1/cm)	884.93		
Radiation and wavelength	CuKa 0.154178 nm		
Diffractometer	Powder DRON 4-13		
Mode of refinement	Full profile		
Number of atomic sites	4		
Number of free parameters	7		
2Θ and $\sin \Theta \lambda$ (max)	99.80 and 0.496		
R_l and R_P	0.0570 and 0.1277		

Table 1. Ag2ZnSnSe4 crystal structure determination

Table 2. Atomic coordinates and isotropic temperature displacement factors for the Ag:ZnSnSe4 structure.

Atom	Wyckoff site	x/a	y/b	z/c	$B_{\rm isc} \times 10^2$, nm ²
Ag	4(d)	0	1/2	1/4	1.21(9)
Zn	2(a)	0	0	0	3.5(3)
Sn	2(b)	0	0	1/2	0.31(9)
Se	8(i)	0.2432(4)	x	0.1129(3)	1.51(8)

Conclusions

Acknowledgments

Insert here, logos of sponsors

