

Carbon sequestration and footprints in conventional and conservation agriculture under maize-wheat sequence in coarse-textured soils of subtropical climate

Dr. Shahida Nisar Soil Chemist Department of Soil Science Punjab Agricultural University, Ludhiana India 141004

Introduction

Soil organic carbon (SOC) sequestration is integral for

- i) Mitigating climate change
- ii) Maintaining soil health and agricultural sustainability

Methodology

- 1. Carbon equivalent emissions
- 2. Greenhouse intensity
- 3. Soil organic C sequestration
- 4. Carbon efficient management in maize-wheat cropping system
- 5. Carbon footprints

Split plot field experiment

Deep tillage		Conventional tillage		No-tillage			
M_0	М	M ₀	М	M ₀	М		
M _{o;} no-mulch M; rice straw mulch (6 t ha ⁻¹)							

RESULTS

Carbon equivalent emissions (kg C ha⁻¹) reduced with decrease in tillage intensity

Operation	Maize	Wheat
Irrigation	320.7	481.1
Fertilizer	167.1	174.5
Tillage: CT	32.9	16.6
DT	81.7	16.6
NT	0.0	16.6
Seed	2.9	9.4
Sowing & Threshing	0	13.2
Pesticides	6.8	6.8
Mulch- Mo	0	0
M	81.9	0
Total for treatments		
CTM ₀	530.4	701.6
DTMo	579.2	
NTMo	497.5	
СТМ	612.3	
DTM	661.1	
NTM	579.4	

 CTM_0 , DTM_0 and NTM_0 are conventional, deep and no-tillage without mulch CTM, DTM and NTM are conventional, deep and no-tillage with mulch

Conservation agriculture lowered carbon footprint and greenhouse intensity, lowest being in no-tillage with crop residue mulching

 CTM_0 , DTM_0 and NTM_0 are conventional, deep and no-tillage without mulch CTM, DTM and NTM are conventional, deep and no-tillage with mulch CF; carbon footprint, GHGI; greenhouse intensity

LSD (0.05)

Conservation agriculture improved C efficiency and sustainability, highest being in no-tillage with crop residue mulching

 CTM_0 , DTM_0 and NTM_0 are conventional, deep and no-tillage without mulch CTM, DTM and NTM are conventional, deep and no-tillage with mulch

LSD (0.05)

After 4 years, no-tillage with mulch resulted in greatest C sequestration

CT, DT and NT are conventional, deep and no-tillage

Conclusions

No-tillage with residue mulching

- Proved to be C efficient practice
- Improved soil organic C sequestration
- Sequestered greatest soil organic C

THANK YOU