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Abstract: This article investigates the distributional impacts of the adoption of Climate-Smart Agri-

cultural Technologies (CSAT) on farm households’ welfare using a dataset that covers four regions, 

32 communes, 320 villages and 2240 households in Mali. Using an instrumental variable quantile 

treatment effects model, the paper addresses the potential endogeneity arising from the selection 

bias and the heterogeneity of the effect across the quantiles of the outcome variables’ distribution. 

The results show that the adoption of CSAT is positively associated with improved households’ 

welfare and the farmer decision to adopt any CSAT is positively and statistically influenced by ac-

cess to credit, contact with extension agents, participation in training, access to information through 

the television and being a member of any organization such as cooperative society. Moreover, the 

results further show that the effect of adoption of CSAT on household welfare varied across the 

different households. In particular, the results show that the impact of adoption of CSAT on house-

holds’ welfare is generally higher for the poorest (farmers located at the bottom tail of the distribu-

tion) end of the welfare distribution. The findings, therefore, highlight the pro-poor impact of the 

adoption of CSAT in the rural Malian context, as well as the need to tailor the CSAT interventions 

toward specific socio-economic segments of the rural population in Mali. 
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1. Introduction  

The global population is rapidly growing, and it exceeded 7.6 billion people in 2018 

(United Nations, 2019). It is also predicted to reach 9.2 billion by 2050 (Silva, 2018), with a 

projected increase in food demand of 59–102% (Elferink and Schierhorn, 2016; Fukase and 

Martin (2017). Efforts to increase agricultural productivity by 60–70% seem to be highly 

necessary to provide food for the population in 2050 (Silva, 2018). Agricultural produc-

tivity growth is one of the most critical and effective pathways for agricultural research 

and technologies to increase rural incomes and reduce poverty (Gollin, Hansen, and 

Wingender, 2018). Studies have shown that agricultural growth has a more considerable 
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effect on reducing poverty than growth in any other sector (de Janvry and Sadoulet, 2010; 

Ravallion Datt, 1996; Warr, 2003). Increasing agricultural productivity through adoption 

and diffusion of modern agricultural technologies is recognized as one of the key path-

ways for economic and agricultural transformation in developing countries (Evenson and 

Gollin 2003; Gollin 2010). Consequently, consistent efforts from national governments and 

development parastatals have been devoted to developing and disseminating climate-

smart agricultural technologies, particularly in regions experiencing huge adverse effects 

of climate change. 

Sub-Saharan Africa (SSA) remains the world’s most food-insecure region, with al-

most one-fourth of people—over 230 million—being undernourished (FAO et al., 2019). 

Although agriculture occupies a vital position in the economies of most SSA regions, it is 

mainly rainfed (Mendelsohn, and Dinar, 2009; Seo, Mendelsohn, Dinar, Hassan, and Ku-

rukulasuriya, 2009; Wani, Sreedevi, Rockstrom, and Ramakrishna, 2009). Thus, highly 

susceptible to climate change effects (Brooks, Adger, and Kelly, 2005), worsening the al-

ready terrible poverty and food insecurity situations of the large majority of the rural 

households whose livelihood and survival depend solely on agriculture (World Bank, 

2016). 

In addition, agricultural yields in Africa are among the lowest in the world. In the 

1960s, for instance, the average cereal yield in Africa puts at 57% of the world is among 

the lowest. Similarly, by the 1980s and 1990s, the yield gap had widened, with Africa 

achieving a cereal yield of only 47% compared to the rest of the world. According to 

Dzanku et al. (2015), the situation may likely remain the same as in the 1990s and may 

probably get worse in the face of climate change if no appropriate action/intervention is 

taking. The future projections based on observed climate trends indicate that tempera-

tures in SSA are consistently rising at an alarming rate than the global average increase 

during the 21st century (Christensen, Carter, Rummukainen, and Amanatidis, 2007; James 

and Washington, 2013; Joshi, Hawkins, Sutton, Lowe, and Frame, 2011; Sanderson, Hem-

ming, and Betts, 2011). Therefore, it is most likely that SSA might be strongly affected by 

climate change. Furthermore, Africa’s agrarian economies are likely to disproportionately 

bear the burden of substantial agricultural yield losses (Dinar, Hassan, Mendelsohn, and 

Benhin, 2012; Solomon et al., 2007). 

The present situation in the Sahelian regions of Africa in the face of erratic climate 

change effects is highly problematic. The incidence of drought and floods in this region is 

becoming more severe and frequent over time. Several factors have been identified to be 

responsible for the vulnerability to climate change in the Sahel. Notably among these fac-

tors is the pervasiveness of poverty that reduces the resources with which affected com-

munities, households, and individuals can adapt to and recover from climate events. 

Other factors are the over-reliance of majority of the population [80–90% (UNEP, 2012)] 

on farming and pastoralism, linked intimately to weather trends and environmental con-

ditions. Thus, implying that climate change effects can jeopardize the livelihood and food 

security of the Sahelian rural households. 

The Republic of Mali is a notable country in the Sahelian region of West Africa. Being 

a landlocked country, Mali appears to be negatively more affected by climate change, es-

pecially agricultural production reduction, which can further increase the prevalence of 

poverty, hunger, and food insecurity and further undermine the welfare of the smallhold-

ers in particular and the population in general. Thus, there is a great need to concentrate 

on agricultural technologies capable of mitigating the adverse effects of climate change, 

particularly on smallholder rural farm households. The Climate Smart agriculture (CSAT) 

concept was proposed by the Food and Agriculture Organization of the United Nations 

(FAO) at the Hague Conference on Agriculture, Food Security and Climate Change in 

2010. Climate-Smart Agriculture (CSAT) is an approach to agricultural Development that 

aims to address the intertwined challenges of food security and climate change (Lipper et 

al., 2014). It is built upon three pillars: increase agricultural productivity and incomes, 

adapt and build resilience to climate change within the agricultural systems, and reduce 

Green House Gas (GHG) emissions, when possible, through CSAT programs promotion 
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of different technologies, practices and policies involve diverse institutions and invest-

ments. These interventions take place at field, farm, regional and national level (FAO, 

2012). Therefore, the adoption of climate-smart agricultural technologies is view as a way 

out of the adverse effects of climate change on agricultural productivity, particularly in 

the Sahel region of West Africa. 

Large piece of evidence from the literature show that adopting agricultural technol-

ogies in developing economies contributes to increased farm productivity and reduces 

household poverty (e.g., Khonje et al., 2014; Zeng et al., 2015). Concerning CSAT practices, 

there exists an extensive literature on adoption impacts of individual climate-smart prac-

tices, although with divergent findings (e.g., Di Falco and Chavas 2009; Kato et al., 2011; 

Di Falco and Veronesi 2013; Abdulai and Huffman 2014; Zougmore et al. ,2014; Ng’ombe 

et al., 2017). Adopting climate-smart agriculture can also increase crop productivity, im-

prove farm household security in food and nutrition, and decrease crop failure (e.g., Kato 

et al., 2011; Di Falco and Veronesi 2013; Abdulai and Huffman 2014). However, the World 

Bank (2009) reported decreased revenue from plots where farmers have adopted soil con-

servations practices, such as the use of stone bunds in Burkina Faso. In contrast, Nkala et 

al. (2011) find no significant effect of minimum tillage on household incomes in Mozam-

bique. 

Furthermore, Di Falco and Chavas (2009) reported that biodiversity positively affects 

risk reduction among barley producers in Ethiopia. The study by Di Falco and Veronesi 

(2013) also reveals that adaptation to climate change, through the adoption of soil conser-

vation, changing crop varieties, switching from early to late planting, and other practices, 

generate an increase in maize yield among the adopter farm households in Ethiopia. How-

ever, other studies have shown that soil conservation, crop choice, and other practices can 

increase technical efficiencies among farmers and minimize on-farm environmental dam-

age (Solis et al., 2007; Veettil et al., 2017; Sabiha et al. ,2017). The results from these studies 

have also been mixed and inconclusive. In addition, many of these studies only investigate 

the effect of CSAT on mean yield, mean income and expenditure. This general result only 

implies that adoption of CSAT tends to have a statistically significant positive impact on 

the income and total household expenditure of the ‘‘average’’ (or the mean income/ex-

penditure) farmer. This finding does not give specific information on whether (and how 

much) CSAT adoption affects the income, consumption expenditure at the lower or upper 

end of the distribution. This suggests a gap in the literature about the potential heteroge-

neity impact of adoption of CSAT. More importantly, the overarching question is whether 

the adoption of CSAT has a heterogeneous impact on the households at different points 

of the income and total household expenditure distribution? Of great importance in many 

areas of empirical economic research is the ability to understanding or provide answers 

to the effect of any intervention on the distribution of outcomes. 

Overall, policymakers in developing countries would be more interested in support-

ing increased adoption of CSAT if there is empirical evidence that the lower-welfare farm-

ers (who are typically poor smallholders) specifically benefit from CSAT adoption. Un-

derstanding the effects of CSAT adoption at different points of the welfare distribution 

would provide a more detailed insight into the economic impacts of CSAT adoption. Sup-

pose adoption of CSAT has a statistically significant effect on the higher end of the welfare 

distribution but reveals no or negative impact for the lower welfare/poor smallholder 

farmers. If that is the case, it therefore, suggests that investing in the development, dis-

semination, and promotion of the CSAT is not a good policy option, especially in cases 

where the priorities are an increase in farm productivity and households’ welfare. Fur-

thermore, if on the other hand we discovered that adoption of CSAT significantly impacts 

the productivity, income, and expenditure (welfare) of the farm households in the lower 

tail of the distribution, it therefore, suggests that promoting the adoption of CSAT among 

the resource-poor smallholder farmers may be a practical action, and further suggests that 

it could increase the poor smallholders’ income, increase agricultural productivity, and 

improve the overall farm household welfare. 
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In this study, the primary motivation is the estimation of the overall impact of the 

adoption of CSAT on income and household welfare and the heterogeneous effects on the 

farm household’s welfare. The study, seeks to fill these gaps by addressing the following 

research questions: What determines households’ decision to participate in the adoption 

of CSAT? What is the overall collective impact of the adoption of CSAT on income and 

household welfare? Based on findings from these previous studies, it implies that observ-

ably both lower-yielding and higher-yielding farmers in developing countries equally 

benefit from the adoption of CSAT. Given that developing country farmers at the lower 

end of the yield distribution tend to be poorer than those at the upper end. These previous 

studies also suggest that the benefits of CSAT adoption would be felt by all types of farm-

ers regardless of whether they are poor smallholders or larger commercial producers. 

One way to capture the effects of CSAT adoption at different points of the welfare 

distribution is to use quantile regression techniques introduced by Koenker and Bassett 

(1978). This technique has been used in various studies in applied economics to study the 

effects of regressors at different points of a particular outcome distribution, mainly in 

studying wage distribution or trade effects (see Bishop et al., 2005; Falaris, 2008; Yasar et 

al., 2006). However, if there are endogeneity or self-selection problems, the coefficient es-

timates from standard quantile regression techniques may be biased (Melly, 2006; Wehby 

et al., 2009; Chernozhukov and Hansen, 2004). Moreover, the standard instrumental vari-

able (IV) or two-stage least squares (2SLS) approach in ordinary least squares (OLS) re-

gression is not directly applicable in a quantile regression context. Chen and Portnoy 

(1996) developed a quantile regression analog to the standard 2SLS approach called a two-

stage quantile regression (2SQR). However, Chernozhukov and Hansen (2004) show that 

2SQR is inconsistent when the quantile treatment effect differs across quantiles. 

Chernozhukov and Hansen (2004, 2005, 2006) developed an IV technique applicable 

for quantile regressions (called the instrumental variable quantile regression or IVQR) to 

address this problem. They have shown that the estimated coefficients in this approach 

are unbiased. Only a few studies have applied IVQR in empirical settings (e.g., Atella et 

al., 2008; Wehby et al., 2009; Olagunju et al., 2019). To the best of our knowledge, the esti-

mation of the possible heterogeneous effects of CSAT adoption on different points of the 

welfare distribution, especially in the presence of self-selection (i.e., non-random selection 

of CSAT adopters) is still not a well-researched area, particularly for the Sahelian region 

of West Africa. Thus, a gap is still currently existing in the literature. Therefore, contrib-

uting to the literature by filling this gap is one of the primary motivations for this study. 

Specifically, we seek to determine the effect of CSAT adoption at different points of the 

welfare distribution. To achieve this objective, we adopted the Instrumental Variable 

Quantile Regression (IVQR) of Chernozhukov and Hansen (2005) and Chernozhukov and 

Hansen (2008) to identify the quantile treatment effect. Explicitly, the instrumental varia-

ble quantile regression model (Chernozhukov and Hansen, 2005, 2013) aims to investigate 

heterogeneous treatment effects in the presence of an endogenous binary treatment vari-

able. 

2. Methodology 

Conceptual Framework and Estimation Strategy 

The current and future impacts of climate change are a major source of concern in 

Sub-Saharan Africa (SSA), due to predominance of rain-fed subsistence-oriented agricul-

ture in the region. (Mendelsohn and Dinar, 2009; Seo, Mendelsohn, Dinar, Hassan, and 

Kurukulasuriya, 2009). The region is affected both by extreme weather events and by 

long-run climate variability, which can severely reduce yields and increase the levels of 

uncertainty with respect to agricultural production and output prices, leading to an over-

all increase welfare vulnerability of smallholders (IPCC, 2014). The treatment variable in 

this study is adoption of Climate-Smart Agricultural Technology (CSAT). 

The broad definition of CSAT includes the integration of different farming/agro-

nomic practices and systems, as well as the improvement of input use, such as seeds, pes-
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ticides, water, etc. It includes typical technologies like climate stress tolerant seed, irriga-

tion, and fertilizer, which are classic examples in technology adoption studies (Simtowe 

and Zeller, 2006; Abate et al., 2016) as well as practices like intercropping, conservation 

agriculture, manuring and water harvesting, elsewhere discussed under terms like sus-

tainable practices or conservation agriculture (Bryan et al., 2013; Ntshangase et al., 2018). 

Essentially, CSAT and practices contribute to the adaptation of farmers to the effects of 

climate change and more importantly, it helps the resource poor farmers to address cli-

mate change issues such as extreme drought, extreme precipitation, and changes in sea-

sonal timing. In this regard, the ultimate aim of CSAT is to simultaneously increase agri-

cultural productivity and resilience in the face of climate change, while at the same time 

reducing greenhouse emissions from agricultural systems (Lipper et al., 2014). 

Evidence from the literature shows that the adoption of locally adapted CSAT port-

folios can lead to an increase of productivity between 7 to 18% (IPCC, 2014, Challinor et 

al., 2014). Additionally, CSAT options typically reduce the production risk by increasing 

the resilience of the agricultural system (Lipper et al., 2014). As Teklewold et al. (2013) 

show for Ethiopia and Arslan et al. (2014) for Zambia adoption rates of CSATs among 

smallholders often remain low, despite the potential of CSAT to increase productivity and 

resilience (Branca et al., 2011). The decision of the rural farm households to adopt CSAT 

and practices is modeled under the assumption that most farmers are rational and risk 

averse, and therefore will always act to maximize expected profit. According to Feder et 

al. (1985), farm households adopt new technology when they expect a more profitable 

outcome than what they gained from the existing traditional technologies or other previ-

ously available technologies. Therefore, CSAT and prcatices will only be appealing to 

households experiencing climate change effects and if the expected benefits significantly 

compensate for the costs. Hence, households’ decision to adopt CSAT may be viewed 

through the lens of constrained optimization where the household chooses the technology 

if it is available, affordable, and its usage is expected to be beneficial (De Janvry, Dustan, 

and Sadoulet, 2010). 

To start with, we first specified the drivers of farm households’ decision to adopt 

CSAT. Many studies (e.g., Nkamleu and Adesina, 2000; Hintze et al., 2003; Payne et al., 

2003; Asfaw and Admassie 2004) have assessed the factors that influence the farm house-

holds’ decision to adopt any new improved agricultural technology utilizing either probit 

or logit models. The two models are both based on the normal and logistic cumulative 

distribution function, respectively. The two models are quite similar, the main difference 

is being that the logistic distribution has slightly fatter tails. In this study, we fit the binary 

probit model to estimate the farm households’ decisions to adopt CSAT since the response 

dependent variable (adoption of CSAT) is binary. The probit model is appropriate since it 

can resolve the problem of heteroscedasticity and satisfies the assumption of cumulative 

normal probability distribution (Gujarati, 2004). In addition, the probit model also in-
cludes believable error term distribution as well as realistic probabilities (Nagler, 
1994). 

The independent variables included in the model are age, education group member-

ship, farm size, etc. Therefore, the probit model is specified as shown below: 

𝐺𝑖 = 𝐹(𝑀𝑖𝛾) + 𝜇𝑖  (1) 

𝐺𝑖 = {
1, 𝑖𝑓 𝑎𝑑𝑜𝑝𝑡𝑒𝑑 𝐶𝑆𝐴𝑇 𝑎𝑛𝑑 𝑝𝑟𝑎𝑐𝑡𝑖𝑐𝑒𝑠 

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  

where: 𝜇~𝑁(0,1); 𝛾 = maximum likelihood; 𝜇𝑖 = error term; M = set of independent var-

iables included in the model. In the case of normal distribution function, the model to 

estimate the probability of observing a farmer using CSAT and practices can be stated as: 

𝑃(𝐺𝑖 = 1|𝑀) = 𝜙(𝑀′𝛾) = ∫
1

√2𝜋

𝑚′𝛾

−∞
𝑒𝑥𝑝(−𝑧2/2)𝑑𝑧  (2) 

where P is the probability that the ith farm household adopt any of the disseminated 

CSAT and practices, and 0 otherwise. Since the estimates of the probit model provide only 



Chem. Proc. 2022, 4, x FOR PEER REVIEW 6 of 14 

 

 

direction of effects, the marginal effects are usually calculated to interpret the actual 

change in probability of independent variables. 

Marginal effects=𝛾𝑖 𝜙(𝑧)  (3) 

where: 𝛾𝑖 = coefficient of the variables; 𝜙(𝑧) = the cumulative normal distribution value 

associated with the mean dependent variable from the probit estimation. To evaluate the 

impact of adoption of CSAT and practices on the distribution of welfare outcomes requires 

an estimation of the conditional linear quantile model as follows: 

𝐽𝑖
𝜋 = 𝑀𝑖𝛼𝜋 + 𝑇𝑖𝛽

𝜋 + 𝜑𝑖  (4) 

where 𝛽𝜋 denotes the quantile treatment effect (QTE) of adoption of CSAT and practices 

𝑇𝑖 . 𝐽𝑖
𝜋 corresponding to the 𝜋th  quantile of the distribution of the welfare outcomes. 𝑀𝑖 

is a vector of observed covariates that consist of socio-economic/demographic character-

istics, etc.; 𝛼𝜋 is a vector of parameters of the covariates to be estimated; 𝜑𝑖 is the unob-

served random variable. However, since the treatment (adoption of CSAT) is non-random 

in the population. Implying that adoption of CSAT may be potentially endogenous to the 

outcome variables, using Equation (4) may lead to erroneous impact estimate. 

Following Olagunju et al., 2019; Okunu and Muchapondwa, 2020; Abadie et al., 2002, 

and Chernozhukov and Hansen 2008 we examine the impact of adoption of CSAT on the 

distribution of welfare outcomes (measured in terms of per capita total households’ in-

come, and per capita total expenditure (food and non-food) employing the QTE condi-

tional on covariates; originally developed by Abadie et al. (2002). We specify the empirical 

econometric model of Abadie et al. (2002) conditional IV-QTEs model as follows: 

𝛽(�̂�𝐼𝑉,𝛿�̂�𝐼𝑉) = 𝑎𝑟𝑔𝑚𝑖𝑛 ∑ 𝑊𝑖
𝐴𝐴𝐼 . 𝜌𝜋(𝐺𝑖 − 𝑀𝛽𝑖 − 𝑇𝑖𝛿)  (5) 

where: = 1 −
𝑇𝑖(1−𝐿𝑖)

1−𝑝𝑟(𝐿=1|𝑀𝑖)
−

(1−𝑇𝑖)𝐿𝐼

𝑝𝑟(𝐿=1|𝑀𝑖)
 

To determine the QTE in equation (5) requires the use of an Instrumental Variable 

(IV) to obtain a consistent estimate of the treatment effect. However, the main concerns 

with respect to IV are week instruments and over identification. Moreover, if the instru-

ment affects the farm households in various ways (heterogeneity) translating the resultant 

treatment effects may be problematic (Frölich & Melly, 2010). In this study, a valid IV must 

the strongly correlated with the farmers decision to adopt CSAT and uncorrelated with 

the outcome variables. Past studies on adoption and its impact on various outcomes are 

of the opinion that no farm household can make any new technology adoption decision 

without first having adequate information about the technology. Being aware of a new 

technology has been advocated as a valid IV for the estimation of adoption impact of new 

technology. 

Intuitively, the farmers’ awareness about the capability of CSAT to mitigate the neg-

ative effects of climate change, particularly in relation to early/extra early maturing im-

proved varieties in places where erratic rainfall, drought and flood are big challenges can 

positively influence the farm households’ decision to adopt CSAT. However, being aware 

of the existence of a new technology and its potential to increase productivity cannot im-

pact the farm households’ welfare. The farm households’ welfare can be impacted only if 

the farm households made an active decision to adopt CSAT. Thus, awareness of CSAT 

has fulfilled the exclusive restriction for it to be a valid IV in this study. Where L is the IV 

(awareness of CSAT). Farm households with T1 > T0 are referred to as compliers. These 

are the farm households that adopted the CSAT because they are aware of CSAT. 

Equation (5) is estimated using the IV-QTE command in STATA because it produces 

analytical standard errors that are consistent even in case of heteroscedasticity (Frölich & 

Melly, 2010). Given that some weights may be negative or positive, the ivqte stata com-

mand uses the local logit estimator and implements the Abadie, Angrist, and Imbens 

(AAI) estimator with positive weights. A substitute offered by Abadie et al. (2002) demon-

strates that the following weights can be implemented as another option to 𝑊𝑖
𝐴𝐴𝐼 , where 
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𝑊𝑖
𝐴𝐴𝐼  =𝐸[𝑊𝑖

𝐴𝐴𝐼|𝐺𝑖,𝑇𝑖 , 𝑀𝑖], Which are always positive. The IV-QTE utilize the local linear 

regression to estimate 𝑊𝑖
𝐴𝐴𝐼 . 

3. Variables 

The Treatment and Welfare Outcome Variables 

The treatment variable in this study is adoption of CSAT and practices, and it is de-

fined as 1 if the farm household adopt any of the climate-smart agricultural technologies 

(early/extra early improved seed varieties, irrigation etc.) and practices (intercropping, 

zero tillage, soil and water management, Integrated pest Management practices etc.), and 

zero otherwise. The outcome variable is welfare which we proxied by income, per capita 

total expenditure, and food and non-food expenditure. All the outcome variables are nor-

malized using the household size to obtain their per capita equivalent. 

4. Data collection and Sampling Framework 

Data were collected in the main crop producing regions of Mali. To investigate the 

economic impacts of adoption of CSAT, we used primary survey data. We conducted the 

survey on a total of 2240 farm households in different villages selected from 32 communes 

that cut across 4 regions of Mali. The survey was carried out from June to October 2019. A 

multi-stage sampling procedure was used for the selection of the targeted sample. First, 

four regions were purposively selected from the regions in Mali. Eight communes were 

selected from each of the regions, making a total of 32 communes. From each of these 

communes we randomly selected 5 project intervention (treated group) and 5 project non-

intervention villages per commune, making a total of 10 villages per commune. Seven 

farm households were selected from each of the villages. Thus, we have a total of a total 

of 1120 project intervention households (treated group) and 1120 project non-intervention 

households (control group). In the communes most of the systemic issues (local policies, 

culture, demographic, socio-economic, and agro-ecology) are similar which could help us 

to control the structural differences between the intervention households (treated group) 

and non-intervention households (control group). All the selected households have agri-

culture as the main occupation production crops and some also rearing animals in addi-

tion to crop production. 

A structured questionnaire was prepared and carefully administered to gather 

household-level primary data. Well-trained enumerators collected the data in face-to-face 

interviews. Data were collected on household demographic characteristics, sources of 

livelihoods, conditions of food security, off-farm employment, asset ownership, types and 

quantities of crops produced, sale of crops and output prices, household access to credit, 

markets and extension services, and membership of producers’ associations, among many 

others. Moreover, the data included information on types and volume of inputs used in 

crop production, inputs supply arrangements, costs of inputs (hired labor, fertilizers, pes-

ticides, and improved seeds), quality improvement practices, market outlets, and overall 

production and marketing challenges. 

5. Results and Discussions 

5.1. Variable Definition and Descriptive Statistics 

Presented in Table 1 is the definition and description of the variables used for the 

empirical analyses. The descriptive analysis shows that a considerable percentage of the 

sampled households (97%) have farming as their primary occupation. About 91% of the 

sampled households are aware of improved agricultural technologies. About 93% of the 

farm households reported that they had received awareness about these agricultural tech-

nologies through the formal sources of information that comprises radio, television, news-

paper, contact with extension agents, and participation at different trainings organized by 

research institutes and NGOs. However, about 75% have adopted at least one of the dis-

seminated improved agricultural technologies. In terms of demographic characteristics, 
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about 99% are male-headed households, and the household head’s average age is 56 years. 

The average household size is 7 persons. 

Rural farm households’ opportunity to participate in development programs and ac-

cess to land for agricultural production in most cases depends on the households’ resi-

dence status in the selected project intervention villages. Almost all the sampled farmers 

(98%) are ‘natives’, residing in their respective villages for an average of 55 years. Besides, 

a significant percentage of the farm households (89%) owned land for farming, and the 

estimated total farm size available for farming is an average of 13.51 ha, out of which only 

8.31 ha is currently under crop production. The result further reveals an average land 

pressure of about three persons per hectare, and this indicates that the farmers could be 

having some challenges related to land access and is a pointer to the need for the farm 

households to adopt improved agricultural technologies to move away from extensive to 

intensive agricultural production. Only about 39% of the household head are literate, with 

an average of about six years of schooling. About 81% of the households are a member of 

an organization. 

Table 1. Variable definition and descriptive statistics. 

Variable  Description Mean (Std. Dev.) 

Main occupation of household head  
1 if the main occupation of the household head is farming, 0 

otherwise  
0.97 s(0.18) 

Adoption of CSAT 1 if the farmer adopts any CSAT technology of, 0 otherwise 0.61 (0.49) 

Per capita consumption expenditure Per capita consumption expenditure (CFA) 107,739.8 (105209.8)  

Gender 1 if the farmer is male, 0 otherwise 0.99 (0.09) 

Age Age of the household head in years 56.39 (14.77) 

Residence status 1 if the farmer is a native of the village, 0 otherwise 0.98 (0.15) 

Household size Number of family members 7.57 (5.74) 

Education  Number of years of formal education 6.39 (4.35) 

Owned land  1 if the farmer owned land, 0 otherwise  0.89 (0.30) 

Total farm size The total farm size available for crop production(Ha) 13.51 (10.56) 

Average cultivated farm size The average farm size currently under crop production (Ha)  8.31 (5.84) 

Access to extension 1 if the farmer has access to extension, 0 otherwise 0.73(0.44) 

Access to credit 1 if the farmer has access to credit, 0 otherwise 0.33(0.47) 

Own a bank account 1 if the farmer owns a bank account, 0 otherwise 0.1381 (0.345) 

Main income source 1 if the main income source is agriculture, 0 otherwise 0.609 (0.488) 

Distance to nearest market Distance of farmer to nearest market (Km) 16.33 (24.92) 

Distance to nearest village Distance of farmer to nearest village(Minutes) 25.57 (46.01) 

Residence in the village  Number of years of residence in the village 55.21 (21.28) 

Farming experiences  Number of years of farming experience 37.88 (17.42) 

Literacy rate 1 if farmer can read or write in French 0.39 (0.49) 

Awareness of improved agricultural technologies  
1 if the farmer is aware of any of the improved technologies, 

0 otherwise 
0.91 (0.29) 

Awareness of CSAT technologies 1 if the farmer is aware of CSAT technologies and practices 0.80 (0.40) 

Formal sources of information 
1 if the farmer receives information from formal sources, 0 

otherwise 
0.93 (0.26) 

Membership of organization 1 if the farmer is a member of any organization, 0 otherwise 0.81 (0.39) 

Migrant household 
1 if at least one person has migrated from the household, 0 

otherwise 
0.49 (0.50) 

Attended training 1 if the farmer has participated in any training, 0 otherwise 0.24 (0.43) 

5.2. Test of Mean Differences in Welfare Outcomes 

This section presents the mean differences in some selected welfare indicators, be-

tween the CSAT adopters and CSAT non-adopters. In this section, we carried out an ob-

served evaluation of the indicators to uncover the difference in all the selected welfare 

indicators between the adopters and non-adopters of the CSAT, and test if the differences 

are statistically significant. The results as presented in Table 2 shows that the farm house-

holds that adopted the CSAT appears to have statistically significant higher values in all 

the selected indicators, except for the non-farm income with insignificant mean difference 

between adopters and non-adopters. 
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The simple comparison of the means of these selected welfare indicators for the 

adopters and non-adopters does not imply impact of adoption of CSAT technologies on 

the households’ welfare. This is because, the presented observed differences might be due 

to other observed and unobserved factors that has nothing to do with adoption of CSAT 

technologies. In other words, the observed difference in the mean outcomes between the 

two groups can be attributed to both the impact of adopting the improved agricultural 

technologies or pre-existing differences (selection bias) (Duflo et al., 2007). Thus, the ob-

served differences in all the outcomes between the adopters and non-adopters have no 

causal interpretation. Consequently, to empirically determine the impact of adopting the 

CSAT technologies on welfare we adopted the IV-QTE. 

Table 2. Test of Mean Differences in Welfare Indicators. 

Variable  Total  

N = 2186 

CSAT-Adopters 

N = 1332 

CSAT Non-Adopters 

N = 854 

Mean Difference  t-Test 

Total household income (CFA) 412,929.50 

(9244.65) 

452,091.70 

(12,297.35) 

351,847.40 

(13,607) 

100,244.40 

(18,830.41) 

5.32 *** 

Per capita total household income 

(CFA) 

70,389.53 

(1695.37) 

77,446.92 

(2242.526) 

59,549.31 

(2529.79) 

17,897.62 

(3448.36) 

5.19 *** 

Total income from crop production 

(CFA) 

247,195.2 

(8752.77) 

288,255.80 

(12,100.72) 

183,152.30 

(11,750.23) 

105,103.50 

(17,802.29) 

5.90 *** 

Total non-farm income (CFA) 131,292.40 

(5172.13) 

131,363.40 

(6774.14) 

1,311,081.60 

(7982.47) 

181.74  

(10,603.23) 

0.02 

Total consumption expenditure 

(CFA) 

599,729.60 

(11,231.95) 

645,263.00 

(14,527.07) 

528,710.20 

(17,432.09) 

116,552.90 

(22,890.81) 

5.09 *** 

Per capita consumption expenditure 

(CFA) 

108,136.80  

(2275.65) 

117,921.50 

(2972.19) 

93,107.50  

(3469.51) 

24,813.98 

(4626.67) 

5.36 *** 

Total non-food expenditure (CFA) 658,591.20 

(24,009.00) 

702,929.40 

(26,519.97) 

589,436.00 

(45,372.88) 

113,493.40 

(49,160.17) 

2.31 ** 

Total food expenditure (CFA) 48,441.57 

(3139.45) 

59,579.30 

(4782.06) 

31,069.84 

(2896.42) 

28,509.46 

(6407.10) 

4.45 *** 

Total Farm size (ha) 13.49 

(0.24) 

13.64 

(0.30) 

13.23  

(0.39) 

0.41 

(0.49) 

0.84 

Total monetary value of household 

asset value (CFA) 

1,642,478.00  

(33,621.01) 

1,691,304.00 

(42,759.84) 

156,6323.00 

(54,319.81) 

124,980.80 

(68,873.49) 

1.81 * 

Total monetary value of productive 

assets (CFA) 

847,241.20  

(15,664.93) 

919,047.80 

(20,070.50) 

735,243.10 

(24,586.09) 

18,3804.70 

(31,872.43) 

5.77 *** 

Figures in parentheses are standard errors. *** p < 0.01, ** p < 0.05, * p < 0.1. 

5.3. Determinants of Adoption of Climate-Smart Agricultural Technologies 

In this section, we examined the factors influencing farmers’ adoption decisions for 

the CSAT. We used a probit model to estimate factors and the results (coefficient estimates 

and marginal effects) are shown in Table 3. Overall, the result confirmed that farmer’s 

adoption decision is influenced by socioeconomic and demographic characteristics (indi-

vidual and household level), social capital, institutional support to the farmers, and the 

farm level susceptibility to climate change. 

The results show that farmers participation in climate change related training have a 

significant and positive relationship with the adoption of CSAT. The marginal effects sug-

gest that participation in training increases the likelihood of adoption by 14.7%. The prob-

able reason for this, as noted in previous studies (Stewart et al., 2015; Martey et al., 2021), 

is that training provides an exposure mechanism that allows farmers to have a clearer 

understanding of the processes and procedures of the technologies. We found that there 

is a negative association between farming experience and farmers adoption decisions. 

Studies such as Ogunniyi et al., (2017) and Sardar et al., (2020) noted that the probability 

of adopting improved agricultural technologies decreases with increasing farmer experi-

ence. 

Household size negatively influence the adoption of CSAT. The result suggests that 

as household size reduces the probability of adoption of CSAT. This result is consistent 
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with previous studies Baiyegunhi et al. (2019) and Zhang et al. (2019) that found that 

households with large sizes are less likely to adopt climate-smart technologies. 

l. In the same vein, Mahama et al. (2020) note that large households often face a chal-

lenge of intra-household budget allocation in which food expenditure takes the large 

share of total household allocation leaving less to other farming expenditures such as im-

proved inputs. The relationship between farm size and adoption of CSAT was found to 

be significant but negative. The result shows that the likelihood of adopting the CSAT 

decreases with increasing size of farms. This may be attributed to the fact that farmers 

may consider the cost to incur on adopting the technology on a large farm size without 

evaluating the economics of scale that can be beneficial due to large expanse of land. 

The results of the institutional variables used in the model suggest that the adoption 

rate can be improved if farming households receive certain supports from relevant agen-

cies. For instance, we found that access to information on climate change (and its impact) 

via mass media was positive and significantly influence the adoption of CSAT. The mar-

ginal effect shows that the probability of adoption increases by 8.2% if the farmers have 

access to information on climate change. This result is in line with Sardar et al. (2020) that 

found that farmers are more likely to adopt CSAT if there is information on the destructive 

impacts of climate change. Interestingly, access to credit and extension services were 

found to positively and significantly influence the adoption of CSAT. The result suggests 

that a farmer that is well endowed with productive resources such as credit facilities and 

has access to knowledge, skills, and awareness towards the use of CSAT through exten-

sion services are likely to adopt than farmers who do not have access to such support. 

Studies (Nkegbe and Shankar, 2014; Awuni et al., 2018; Mahama et al., 2020) have con-

firmed that access to credit facilities and extension services are very important factors that 

mostly form farmers’ opinions and decisions for adopting an agricultural technology. 

The relationship between income from agriculture and the adoption of CSAT was 

found to be positive and significant at 1%. Income plays an important role in the decision-

making process of most farming households (Mahama et al., 2020). The result suggests 

that an increase in the income generated from agriculture will lead to a 9.2% increase in 

the likelihood of adopting CSAT. Interestingly, distance to the nearest village was found 

to positively influence adoption at 1% significant level. The marginal increase in the prob-

ability of adopting CSAT will be 1% in relation to the distance to the nearest village. As 

noted by Wang et al. (2020), closeness and connections with agricultural hubs within farm-

ers’ local localities could increase the likelihood of selling agricultural products which 

may increase the probability of adoption of improved agricultural technology. Social cap-

ital is an important factor that influences individual farmers’ decision to adopt an im-

proved agricultural technology. We found that membership of any organization such as 

a farmers’ group is positive and significantly influencing the probability of adopting 

CSAT. The marginal effect estimate shows that farmer membership of any social group 

increasesthe likelihood of adopting CSAT by 11.9%. Studies (Hailu et al., 2014; Tefera et 

al., 2016, Wossen et al., 2017) have found that the adoption rate of improved technology 

can be significantly increased if the household head belongs to any association. 

5.4. The Distributional Effects of CSAT Adoption on Welfare Outcomes 

Table 4 presents the results of the distributional impacts of adoption of CSAT on the 

four welfare indicators considered in this study including per capita total consumption 

expenditure, per capita non-food expenditure, per capita food expenditure, and per capita 

total household income. The results reveal that the treatments effects of adoption of CSAT 

on per capita total consumption expenditure is positive and statistically significant at 1% 

level across all the quantiles, except for the median (Q0.50). Specifically, the impacts of 

CSAT, in value terms, ranges between 11,399.70 CFA Franc for households at the lowest 

tail of the distribution to 46,902.43 CFA Franc for those at the highest tail. These findings 

reflect heterogeneity in the impacts of CSAT on welfare as measured by per capita total 
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consumption expenditure. In terms of percentage impact of the treatment effects, the find-

ings show that the highest percentage increase of the impacts of CSAT adoption was 

found at the lower tails of per capita food expenditure consumption distribution. 

Table 3. Estimates of determinants of adoption of CSAT. 

 Probit Regression Marginal Effects 

Variables Coefficient Std. Error dy/dx Std. Error 

Number of years of residence in the village 0.003 0.002 0.001 0.001 

Attend training (yes = 1) 0.404 *** 0.082 0.147 *** 0.028 

Years of farming experience −0.013 *** 0.002 −0.005 *** 0.001 

Tropical Livestock Unit (TLU) 0.002 0.002 0.001 0.001 

Literacy (yes = 1) 0.031 0.066 0.012 0.025 

Total farm size (ha) −0.006 * 0.003 −0.002 * 0.001 

Household size −0.013 ** 0.006 −0.005 ** 0.002 

Access to information (television = 1) 0.216 *** 0.065 0.082 *** 0.024 

Access to credit (yes = 1) 0.278 *** 0.080 0.103 *** 0.029 

Age of household head (years) 0.000 0.013 0.000 0.005 

Square of age 0.000 0.000 0.000 0.000 

Contact with extension agents (yes = 1) 0.423 *** 0.070 0.164 *** 0.027 

Household with migrant (yes = 1) −0.047 0.063 −0.018 0.024 

Main income from agriculture (yes = 1) 0.240 *** 0.064 0.092 *** 0.025 

Married (polygamous = 1) −0.066 0.069 −0.025 0.026 

Distance to the nearest village (km) 0.001 * 0.001 0.001 * 0.000 

Walking distance to the nearest market (min) −0.000 0.001 −0.000 0.000 

Membership of any organization(yes = 1) 0.306 *** 0.081 0.119 *** 0.032 

Bank account (yes = 1) −0.234 ** 0.102 −0.091 ** 0.040 

Constant −0.241 0.372   

Number of observations 2216  2216  

The adoption of CSAT significantly lead to an increase in the per capita total con-

sumption expenditure by 53.75% and 41.70% for farming households in the 15th and the 

25th quantiles, respectively, and 35.16% and 29.95% for farming households in the 75th 

and the 85th quantiles, respectively implying that the impacts of CSAT on per capita food 

consumption expenditure are higher among poorer farm households compared to farm 

households that are well-off. This is in line with the finding of Olagunju et al. (2020) that 

reported that the welfare outcomes of poorer maize farmers in rural Nigeria are more 

positively and significantly impacted by the adoption of improved seed varieties than 

well-off farmers. 

The results also show that adoption of CSAT positively and significantly impact both 

per capita food and non-food expenditure differently across the five quantiles, ranging 

from 11,480.87 (Q0.15) CFA Franc to 32,515.77 (Q0.85) CFA Franc for per capita non-food 

expenditure, and 367.45 (Q0.15) CFA Franc to 2530.44 (Q0.85) CFA Franc for per capita 

food expenditure. In terms of percentage impact of CSAT, the findings show that the high-

est percentage increase of the effects of CSAT adoption was found at the lower tails of per 

capita food and non-food expenditure distributions. The adoption of CSAT significantly 

raised per capita non-food expenditure by 67.67% and 55.05% in the 15th and the 25th 

quantiles, respectively, and increased per capita food expenditure by 31.20% and 31.89% 

in the 15th and the 25th quantiles, respectively. The percentage impact of adoption of 

CSAT on per capita non-food expenditure is significantly higher than the corresponding 

impact on per capita food expenditure. Giving that farm households expenditure on non-

food items are often larger than food items, the significant larger impact of CSAT on per 

capita non-food expenditure implies that adoption status will have a strong bearing on 

the livelihood status of rural farmers in the study area. 

Finally, the results show that the impact of the adoption of CSAT is also positive and 

significant across the distribution of the per capita total household income. In value terms, 

the IV-QTE estimates show a significant and increasing pattern along the per capita total 

household income distribution. The largest percentage impacts of about 86.40% in the 
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Q.15 and 65.96% in Q0.25 were found in the lower quantiles of the per capita total house-

hold income distribution. This also suggests that adoption of CSAT impacts per capita 

total income of poorer households substantially, in support of the existing findings on 

other welfare outcomes. 

Table 4. The Distributional effects of CSAT adoption on welfare. 

Variable IV-QTE Estimates 

Q0.15 Q0.25 Q0.50 Q0.75 Q0.85 

Per capita total consumption expenditure (CFA) 

Treatment effect of CSAT adoption  

 

 

11,399.70*** 

(3395.17) 

 

 

13,981.77 *** 

(3971.644) 

 

 

29,217.44 

(6794.67) 

 

 

41,897.82 *** 

(10,980.83) 

 

 

46,902.43 *** 

 

% Impact of CSAT adoption $ 53.75 41.70 43.73 35.16 29.95 

Per Capita non-food expenditure (CFA) Treatment 

effect of CSAT adoption  

 

11,480.87 *** 

(3253.08) 

 

14,342.1 *** 

(3724.21) 

 

22,770.61 *** 

(6274.41) 

 

35,035.97 *** 

(8557.16) 

 

32,515.77 ** 

(15,257.77) 

% Impact of CSAT adoption $  67.67 55.05 36.69 31.82 21.56 

Per capita food expenditure (CFA) 

Treatment effect of CSAT adoption 

 

367.45 ** 

(152.35) 

 

491.15 *** 

(166.01) 

 

686.23 *** 

(236.54) 

 

1761.83 *** 

(462.31) 

 

2530.44 *** 

(784.94) 

% Impact of CSAT adoption $  31.20 31.89 24.77 34.57 39.37 

      

Per Capita total household income (CFA) Treat-

ment effect of CSAT adoption  

 

5695.735 ** 

(2469.954) 

 

10,024.48 *** 

(3358.808) 

 

15,312.29 *** 

(4637.214) 

 

27,182.22 *** 

(7047.017) 

 

29,121.3 ** 

(12,355.48) 

% Impact of CSAT adoption $ 86.40 65.96 31.94 29.04 23.82 

Notes: Robust standard errors are in parentheses; **, and *** represent statistical significance at p < 

0.05, and p < 0.01, respectively; $ This was estimated by dividing the treatment effect coefficient by 

the fitted values when the adoption binary variable is zero and other control variables are at their 

means for the treated (Abadie et al., 2002); All the estimated models contain the control variables 

and are available on request. 

6. Conclusions and Policy Recommendations 

This study investigates the distributional impacts of the adoption of CSAT on four 

welfare indicators considered including per capita total consumption expenditure, per 

capita non-food expenditure, and per capita food expenditure and per capita total house-

hold income. Adoption of CSAT is essential in achieving improvement in overall house-

holds’ welfare. The farmers’ decision to adopt any CSAT is positively and statistically in-

fluence by access to credit, contact with extension agents, participation in training, access 

to information through the television and being a member of any organization such as 

cooperative society. 

The results of the test of mean difference show that the adopters of CSAT are on av-

erage better than the non-adopters in all selected indicators of welfare. The results of the 

IV-QTE reveal a heterogeneity in the impacts of CSAT on welfare, and the highest per-

centage increase of the impact of CSAT adoption was found at the lower tails of per capita 

food expenditure consumption distribution. This implies that the impacts of CSAT on per 

capita food consumption expenditure are more pronounced among poorer farm house-

holds compared to farm households that are well-off. In the same vein, the highest per-

centage increase of the impact of CSAT adoption was found at the lower tails of per capita 

food and non-food expenditure distributions and adoption of CSAT impacts per capita 

total income of poorer households substantially. In conclusion, the adoption of CSAT is 

pro-poor and we therefore recommend that climate-smart interventions should be scale-

up towards the resource-poor farm households that are currently facing the adverse ef-

fects of climate change in Mali. 
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