Biosensor for Electrochemical Detection of Amphetamine in Street Samples Using an innovative nanoMIPs-based Sensor

Florina Maria Truta¹, Mihaela Tertis¹, Elena Piletska², Sergey A. Piletsky², Alvaro Garcia Cruz², Meshal Almabadi², Cecilia Cristea¹, Karolien De Wael^{3,4} 1Analytical Chemistry Department, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania 4 Pasteur Street, Cluj-Napoca, Romania 2Chemistry Department, College of Science and Engineering University of Leicester 3A-Sens Lab, University of Antwerp, Antwerp, Belgium 4 NANOlab Center of Excellence, University of Antwerp, Antwerp, Belgium

Florina.Truta@umfcluj.ro

Introduction

- Amphetamine is the 2nd most used illicit drug in EU:
- 1.4 million young adults (15-34) used amphetamines during the last year;
- NanoMIPs, sometimes called "plastic antibodies", are nanostructured polymer particles capable of selectively recognizing their target:
- The technology presented herein could potentially help to rapidly determine AMP from confiscated street samples using nanoMIPs;
- For the immobilization of nanoMIPs onto the surface of graphite SPEs different approaches were tried.

Methodology					
Experimental conditions	SPE with nanoMIPs:chitosan=2:1	SPE with nanoMIPs:chitosan=2:1 and 1mg/mL GPHOx			
Step 1: Deposition	10 μL Chitosan 2% + nanoMIPs (1:2)	10 μL Chitosan 2% + nanoMIPs + GPHOx 1mg/mL(1:2:1)			
Step 2: Conditioning	Dried	Dried + Reduction (CV 10 cycles from -1.4 V to 0.5 V, 0.5 V/s			
Step 3: Testing	DPV (-0.9 – 0.4 V, 0,033 V/s) in PBS pH 7.4				

Results

I. SEM + TEM characterization

E (V)

Results						
III. Interferences						
100 nM Amphetamine	SPE with nanoMIPs:chitosan=2:1	SPE with nanoMIPs:chitosan=2:1 and 1mg/mL GPHOx				
+100 nM Cocaine	106.83 %	100.17%				
+100 nM MDMA	92.85%	100.65%				
+100 nM Metamphetamine	95.71%	96.94%				

IV. Real samples

		4	/			
2	0.0	-	50	100	150	200
E (V)		Conc. AMF (nM)				

y=0.0617*x+2.4803

Sample/Platform	Dilution	AMF conc. nanoMIPs (µg/mL)	AMF conc. UPLC-MS (µg/mL)	Recovery (%)
S21 nanoMIPs:chitosan	450.000	1334.93	4270.42	96.84%
S24 nanoMIPs:chitosan	150 000	1390.84	1378.42	100.9%
S21 nanoMIPs:chitosan:GPHOx	F0 000	564.23	505.34	111.65%
S24 nanoMIPs:chitosan:GPHOx	30 000	543.53	505.34	107.55%

Conclusion

(2) The addition of the GPHOx in the suspension used for the generation of the composite film on the electrode

along with nanoMIPs and chitosan determined an increase in the sensitivity for amphetamine detection

Using this approach, the amphetamine was successfully detected from the real street samples.

Acknowledgements

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 833787, BorderSens.