Image: State Stat

Development of Electrochemical Sensors Based on Electrosynthesized Ion Imprinted Polymers for Cobalt (Co²⁺) Ions Determination in Water

Nelson Manrique-Rodríguez, Sabrina Di Masi* and Cosimino Malitesta Laboratorio di Chimica Analitica, Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Lecce, Italia.

*sabrina.dimasi@unisalento.it

CONTENT

- ✓ INTRODUCTION
- ✓ OBJECTIVE
- ✓ METHODS
- ✓ RESULTS
- ✓ CONCLUSIONS

- ✓ COBALT POLLUTION IN SOIL AND WATER
- MINING INDUSTRY, DOMESTIC AND INDUSTRIAL WASTEWATER, BURNING OF FOSSIL FUELS
- AFFECTS GROWTH AND YIELD OF AGRICULTURE CROP PLANTS
- POTENTIAL RISK TO FOOD SOURCES AND HUMAN HEALTH
- ✓ MONITOR EVEN TRACE AMOUNTS OF COBALT

- **ATOMIC ABSORTION SPECTROMETRY**
- INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRY
- **FLUORESCENCE METHODS**

- ELECTROCHEMICAL TECHNIQUES
- INTERFERENCE, SAMPLE PREPARATION, BEING TIME-CONSUMING, EXPENSIVE INSTRUMENTS, AND LOW SENSITIVITY.
- ✓ SIMPLE, RAPID, SENSITIVE, AND SPECIFIC METHOD FOR DETECTING Co²⁺

AN HIGH SELECTIVE RECOGNITION ELEMENTS: ION IMPRINTED POLYMER (IIP)

7

CHEMICAL SYNTHESIS

DEVELOPMENT OF AN ELECTROCHEMICAL IMPEDIMETRIC SENSOR BASED ON AN ION IMPRINTED POLYMERIC FILM FOR THE DETERMINATION OF Co²⁺ IONS IN WATER OF ENVIRONMENTAL INTEREST

METHODS

Ion Imprinted Polymer (IIP) Preparation and Characterization

ELECTROCHEMICAL CHARACTERIZATION

Cyclic voltammetry in 10 mM $[Fe(CN)_6]^{3-/4-} + 0.1$ M KCl for bare screen printed electrode, after 2-AP electropolymerisation and after washing step in formic acid:water 1:1

10

EIS data in 10 mM $[[Fe(CN)_6]^{3-}/^{4-} + 0.1 \text{ M KCl for}]$ bare screen printed electrode, after 2-AP electropolymerisation and after washing step in formic acid:water 1:1

OPTIMISATION BY MULTIVARIATE EXPERIMENTAL DESIGN

MODDE[®] SVIFCTSVS

DoE 23 different experiments, 4 affecting variables Y = Sensitivity of IIP sensor

Experiment number	Experiment name	Run Order	Incl/Excl	2-AP concentration	CO ²⁺ concentration	Cycles	Time elution
1	N1	18	Incl	1	1	10	10
2	N2	1	Incl	2	1	10	10
3	N3	5	Incl	1	5	10	10
4	N4	2	Incl	2	1	30	10
5	N5	23	Incl	1	5	30	10
6	N6	22	Incl	2	5	30	10
7	N7	3	Incl	1	1	10	25
8	N8	9	Incl	1	5	10	25
9	N9	6	Incl	2	5	10	25
10	N10	8	Incl	1	1	30	25
11	N11	16	Incl	2	1	30	25
12	N12	11	Incl	2	5	30	25
13	N13	19	Incl	1	3	20	17.5
14	N14	15	Incl	2	3	20	17.5
15	N15	20	Incl	1.5	1	20	17.5
16	N16	12	Incl	1.5	5	20	17.5
17	N17	4	Incl	1.5	3	10	17.5
18	N18	17	Incl	1.5	3	30	17.5
19	N19	7	Incl	1.5	3	20	10
20	N20	14	Incl	1.5	3	20	25
21	N21	13	Incl	1.5	3	20	17.5
22	N22	10	Incl	1.5	3	20	17.5
23	N23	21	Incl	1.5	3	20	17.5

OPTIMISATION OF EXPERIMENTAL FITTING OF EIS DATA

EIS Spectrum Analyser®

Nyquist plot acquired in 10 mM $[Fe(CN)_6]^{3-/4-}$ for Co(II)-IIP film after incubation of Co(II) ions dissolved in acetate buffer solution (50 mM, pH= 5.0) at different increased concentration (from 1.9 to 125 µM)

Good reproducibility and expected trend have been recorded with a printed factor (IF=5) with high sensitivity

CONCLUSIONS

- Adequate properties of selectivity and stability of the IIP films, compared with the yields obtained with other sensors.
 - 44% of experiments with best fit comparing circuit model vs. experimental data.
- ✓ Sensitivity of Co(II)-IIP film sensor towards Co²⁺ ions in the range of concentration between 1.9 and 32.5 µmol L⁻¹ was 5 times higher than that reported for NIP film, revealing the goodness of imprinted process.

Thank you

Acetate buffer