

Type of the Paper (Proceedings	s, Abstract, Extended Abstract, Editorial, etc.)	1
Pro	duction characteristics of miscanthus	2
(Mischantus	x giganteus Greef et Deu) under agroecological	3
	conditions of Serbia	4
Nenad Đurić ^{1*} , D	obrivoj Poštić², Vera Rajičić³, Gordana Branković⁴, Gorica Cvijanović⁵, Radiša Đorđević⁰, Slađana Savić ⁷	5 6
¹ Institute for Veg	zetable Crops, Karađorđeva 71, Smederevska Palanka, Serbia; e-mail: nenad.djuric@outlook.com	7
² Institute for Plant	Protection and Environment, Teodora Drajzera 9, Beograd, Serbia; e-mail: <u>pdobrivoj@yahoo.com</u>	8
_	ulty of Agriculture, Kosančićeva 4, Kruševac, Serbia; e-mail: verarajicic@yahoo.com	9
	of Agriculture, Nemanjina 6, Zemun-Belgrade, Serbia; e-mail: <u>gbrankovic@agrif.bg.ac.rs</u>	10
⁵ Institute of Information T	echnologies, University of Kragujevac, Jovana Cvijića bb, Kragujevac, Serbia; e-mail: <u>cvijagor@yahoo.com</u>	11
⁶ Institute for Veget	table Crops, Karađorđeva 71, Smederevska Palanka, Serbia; e-mail: rdjordjevic@institut-palanka.rs	12
⁷ Institute for Ve	getable Crops, Karađorđeva 71, Smederevska Palanka, Serbia; e-mail: ssavic@institut-palanka.rs * Correspondence: e-mail: nenad.djuric@outlook.com; Tel.: ++381628035360 † Presented at the title, place, and date.	13 14 15
Abstract: The paper presents	research of production possibilities of miscanthus (Mischantus x giganteus Greef et Deu) in agroeco-	16
	r that purpose, an experiment was set up in Srem on the site of Podunavlje village of Surduk. The soil	17
0	stablished in 2012 belongs to the type of carbonate chernozem on a loess plateau, at an altitude of 150	18
-	tage and yield of dry miscanthus stalks during five years, from 2015 to 2019, as well as the content of	19
о́	ng on agroecological conditions and variants of fertilization without top dressing and with spring top	20
	en fertilizer were analysed. The highest recorded yield of dry stalks was in 2019 (34.525 kg ha ¹), and	21
	e dry year of 2017 (17.980 kg ha ¹) both in the variant with top-dressing.	22
	Keywords: miscanthus, agroecological conditions, morphological characteristics, dry stalk yield	23 24
Citation: Lastname, F.; Lastname, F.; Lastname, F. Title. <i>Chem. Proc.</i> 2021 ,		24
3, x. https://doi.org/10.3390/xxxxx	Introduction	25
Published: date	In the last 15 years, several perennial wild grass species have become the subject of interest	26
	of biologists and agronomists in Serbia. Research includes grasses that have intensive growth dur-	27
Publisher's Note: MDPI stays neu- tral with regard to jurisdictional	ing the growing season and reach a height of over two meters, while providing a large biomass	28
claims in published maps and institu-	suitable for different uses. According to results obtained by numerous researchers [13], [1], [3], [4]	29
tional affiliations.	and others, productive organs of these plant species could be used in numerous branches of indus-	30
	try. Miscanthus was originally grown only as an ornamental plant. It is characterized by extremely	31
	strong growth and high genetic potential for fertility [9] and is becoming important as an energy	32
Copyright: © 2021 by the authors.	crop. As a consequence of its triploidy, miscanthus does not produce fertile seeds, so there is no	33
Submitted for possible open access publication under the terms and con-	possibility for the plants to spread outside thair plantations and form weeds in surrounding agri-	34
ditions of the Creative Commons At-	cultural areas [10]. Miscanthus is mainly grown for production of biofuels from aboveground bio-	35
tribution (CC BY) license (https://cre-	mass Fresh plant hismass mourn in the paniels forming stage, serves as raw material for hisgas and	26

mass. Fresh plant biomass mown in the panicle forming stage, serves as raw material for biogas and

bio ethanol, while dry stalks are burned directly in large boiler plants or used to produce pellets

ativecommons.org/licenses/by/4.0/).

36

and briquettes [7], [4]. It belongs to the group of energy crops, whose role is to release heat by combustion, and reduce emission of 1 SO₂ and other harmful gases into the atmosphere. CO₂ released during combustion of this biofuel was absorbed by plants from the 2 atmosphere during the year, so that its concentration does not increase [6]. Thus, combustion of miscanthus biomass reduces CO2 3 emissions. As pointed out [12], the ratio of the equivalent of kW h⁻¹ of produced electricity and the emission of SO₂ is 0.131 kilograms, 4 while with coal combustion, that ratio is 7.5 times higher, 0.990 kilograms of SO₂. In the temperate continental climate zone, miscan-5 thus is the crop with the highest energy potential per unit area [2]. In the future, fresh miscanthus biomass will be used to obtain 6 gaseous and liquid biofuels, obtained by decomposing cellulose, hemicellulose and lignin. These fuels are relatively cheap and are a 7 good substitute for minerals (shale, oil and natural gas). 8

The aim of this research is to analyse the influence of agroclimatic conditions of the Srem locality in Serbia on the yield of 9 dry miscanthus plant mass in five different production years, with and without spring fertilization with nitrogen fertilizers. 10

Materials and Methods

The experiment was set up at a site in eastern Srem in the Danube village of Surduk, in 2012. The land belongs to the type 12 of carbonate chernozem on a loess plateau. It is located at an altitude of 150 meters. 13

For the time being, a plantation was formed in April 2012, on the 10 m long and 2 m wide experimental plot, by planting 14 two rhizomes per square meter, so that 8 elementary plots with two clusters, or a total of 40 clusters, were obtained. To date, every 15 year at the end of March, 30 kg per ha-1 of pure nitrogen were added on four plots in a random distribution, while on the other four 16 plots plants were grown without additional mineral fertilizers. Samples were taken from each elementary plot to determine cellulose 17 content, and the remaining biomass was naturally dried and the yield per cluster was subsequently determined, and calculated per 18 unit area. Cellulose content was determined at the Soil Institute in Belgrade using the Fibertec method (ISO 6865/2004). 19

The total amount of precipitation is presented according to monthly distribution, and also the quantities during the vegetation 20 period. Values were obtained from the nearest meteorological station at PKB Agroekonomik Institute, Belgrade (Table 1). 21

Months			Years			Average	Optimum
	2015	2016	2017	2018	2019		
January	49.0	46.0	23.0	39.0	22.0	55	-
February	49.0	41.0	20.0	47.0	34.0	51.0	-
March	97.0	79.0	29.0	58.0	12.0	54.0	50.0
April	25.0	35.0	66.0	35.0	77.0	52.0	55.0
May	88.0	76.0	116.0	81.0	142.0	80.0	85.0
June	20.0	98.0	37.0	85.0	89.0	82.0	90.0
July	5.0	35.0	16.0	97.0	43.0	65.0	100.0
August	69.0	12.0	30.0	77.0	40.0	56.0	80.0
September	86.0	45.0	61.0	53.0	28.0	54.0	55.0
October	68.0	58.0	57.0	37.0	14.0	54.0	35.0
November	51.0	50.0	52.0	49.0	54.0	52.0	-
December	14.0	63.0	37.0	65.0	55.0	45.0	-
III-IX	390.0	380.0	355.0	486.0	431.0	443.0	515.0
I-XII	621.0	632.0	544.0	723.0	610.0	700.0	

Table 1. Quantities and distribution of precipitation (mm) 2015-2019

Data for average monthly air temperatures by years and multi-year heat values were taken from the Meteorological Station 23 24

at PKB Agroeconomic Institute, while heat requirements of plants were taken from the data of Withers, (2014), (Table 2).

22

Months			Years			Average	Optimum
	2015	2016	2017	2018	2019		
January	3,0	1,0	-5,0	3,0	2,0	1,6	-
February	3,0	7,0	3,0	2,0	6,0	2,1	-
March	7,0	8,0	10,0	5,0	11,0	6,9	10
April	12,0	13,0	12,0	17,0	14,0	13,0	15,0
May	19,0	18,0	18,0	20,0	16,0	18,3	18,0
June	23,0	22,0	23,0	21,0	24,0	22,4	19,0
July	28,0	23,0	25,0	22,0	24,0	24,0	21,0
August	26,0	23,0	25,0	24,0	26,0	23,5	21,0
September	21,0	19,0	18,0	18,0	20,0	18,5	18,0
October	11,0	14,0	13,0	14,0	16,0	11,2	10,0
November	7,0	8,0	7,0	8,0	12,0	7,1	-
December	3,0	3,0	4,0	3,0	6,0	2,4	-
IV-IX	19,4	17,5	18,0	17,6	19,3	17,2	16,5
I-XII	13.6	13.3	12.8	12.9	14.8	13.1	

Table 2. Average air temperatures (°C) 2015-2019

Agrochemical analysis of the soil was done in the laboratory of the Soil Institute in Belgrade. Results are shown in Table 3.

Table 3. Agrochemical analyses of soil (locality Surduk)

Depth	pН	pН	Humus	Ν	P2O5	K ₂ O
	(H ₂ O)	(nKCl)	(%)	(%)	(mg 100 g ⁻¹)	(mg 100 g ⁻¹)
0-30 cm	7,9	7,1	3,66	0,253	17,4	21,6
30-60 cm	8,2	7,3	3,41	0,219	15,1	19,4
Average	8,1	7,2	3,54	0,236	16,3	20,5

Statistical analyses were performed using IBM SPSS Statistics Version 20.

Results and Discussion

Stalk height during the five-year research was 294.1 cm, with very significant variations by research years. The second 6 treatment by nitrogen supplementation on a multi-year average also influenced this morphological trait of miscanthus (Table 4). 7

Table 4. Stalk height in the panicle stage (cm) 2015-2019

Year/Variant	2015	2016	2017	2018	2019	Average
Control	222	295	235	328	357	287,4
N, 30 kgha-1	227	318	242	356	361	300,9
Average	224,5	306,5	238,5	342,0	359,0	294,1
LSD, years	5%	74,474		1%	129,668	
LSD, N ₃₀	5%	15,26		1%	26,57	

In years when the amount of vegetation period precipitation was below 400 mm, plants formed stalks of 224,5 cm (2015), to 9 306,5 cm (2016) high. Average height of stalks in years with more than 430 mm of vegetation precipitation was 342,0 cm (2018) and 10 359,0 cm (2019). These values are significantly higher compared to the average height in the first and third year of research. The 11

1

23

4 5

impact of nitrogen on stalk height was significant in the five-year average, as well as in the second year, and very significant in the 1 fourth and fifth year. Plants had the highest stalks in 2019 (359,0 cm), both for controls (357,0 cm) and in the variant with supplemen-2 tation (361,0 cm). 3

The five-year average for stalk yields, obtained by measuring the total dry biomass after mowing and converting to kilo-4 grams per hectare, was 25.953 kg ha-1. Significant variations in dry stalk yield in the overall average were influenced by weather 5 conditions, as well as crop fertilization (Table 5). 6

Table 5. Dry stal	k yield (kg	ha ⁻¹) 2015-2019
-------------------	-------------	------------------------------

Year/Variant	2015	2016	2017	2018	2019	Average
Control	20.425	25.320	18.025	30.655	33.373	25.560
N, 30 kgha-1	21.470	25.550	17.980	32.210	34.525	26.347
Average	20.948	25.435	18.003	31.433	33.949	25.953
LSD, years	5%	6.985,5		1%	11.952,2	
LSD, N30	5%	756,47		1%	1.317,01	

In the meteorologically most unfavourable year (2017), average yield of dry stalks was the lowest (18.003 kg ha⁻¹). The 8 average yield of dry stalks in the first three years with unfavourable water regime was 21.462 kg ha-1. Compared to the fourth and 9 fifth year, i.e. with the period of favourable water and heat regime (32.681 kg ha⁻¹), the average yield of dry stalks was 48% lower. 10 Additional crop nutrition had a significant impact on dry stalks yield in the overall five-year average. The higher impact of nitrogen 11 on crop nutrition was influenced by the amount and monthly distribution of precipitation in the miscanthus vegetation period. A 12 comparison of obtained yields with previous research by numerous authors [5], [9], [4], enambles the conclusion that yields depend 13 on many factors, as well as on agroecological and applied agrotechnics. 14

Dry stalks contained a high share of cellulose in all variants and years of research. Average cellulose content was 32,11%, 15 and is presented in Table 6. 16

Year/Variant	2015	2016	2017	2018	2019	Average
Control	31,95	32,13	32,21	32,09	32,14	32,11
N, 30 kgha ⁻¹	32,01	32,20	32,19	32,01	32,16	32,12
Average	31,98	32,17	32,20	32,05	32,15	32,11
LSD, years	5%	0,253		1%	0,431	
LSD, N30		0,091			0,156	

Table 6. Stalk cellulose content in (%) 2015-2019

Analysis of stalk cellulose content by years of research showed differences, but they were not statistically significant. Use 18 of nitrogen fertilizers also did not affect cellulose synthesis in the stalk, so there were no differences by years, nor of the multi-year 19 average. Carbohydrate content is about 80% of the air-dried mass of miscanthus stalks, while cellulose content is 30-35% [2]. Accord-20 ing to the results of numerous authors [13], [3] and other authors, meteorological conditions and applied agrotechnical measures do 21 not have a statistically significant effect on the chemical composition of aboveground biomass, or on cellulose content in stalks. 22 Studies of quality of miscanthus stalks grown in different agroecological conditions in Serbia, [9] and [10] concluded that growing 23 conditions and applied agrotechnical measures did not have any major impact on the chemical composition of aboveground biomass, 24 since during the maturation of plants i.e. stalks, the highest percentage of nutrients is transferred to rhizomes. Two-factor analysis of 25 variance of the examined traits is presented in Table 7. 26

7

17

Factors	Stalk	Dry stalk	Cellulose content	
Factors	height	yield	Centrose content	
Year (A)	738,3**	6541,8**	1,378 ns	
Fertilization (B)	42,56**	105,43**	0,012 ns	
A×B	7,13**	17,92**	0,153 ns	

Table 7. Two-factor analysis of variance of examined traits

** - significant at 0.01; * - significant at 0.05; ns - not significant

Data in Table 7 shows that the year factor had a very high statistical significance for stalk height (738,3**) and dry stalk yield 3 (6541,8**). The year had no statistical significance for cellulose content. The fertilization factor had a very high statistical significance 4 for stalk height (42,56**) and dry stalk yield (105,43**). This factor had no statistical significance on cellulose content. The interaction 5 of year and fertilization had a very high statistical significance for stalk height (7,13**) and dry stalk yield (17,92**). This interaction 6 had no statistical significance for cellulose content. 7

Conclusion

As presented in the paper, based on research results of the impact of weather and soil conditions on the production of 9 miscanthus on highly productive soil, the following can be concluded: 10

The average value of stalk height during the five-year research was 294,1 cm, with very significant variations by years of 11 research. Nitrogen supplementation on a multi-year average also influenced this morphological trait of miscanthus. The yield of dry 12 stalks for the entire experiment on a five-year average, calculated in kilograms per hectare, was 25.953 kg ha⁻¹. Significant variations 13 of dry stalks yield in the overall average were influenced by weather conditions, as well as crop nutrition. Dry stalks had a high share 14 of cellulose in all variants and years of research (32,11%). The year factor had a very high statistical significance for stalk height 15 (738,3**) and dry stalk yield (6541,8**). The year had no statistically significant effect on cellulose content. The fertilization factor had 16 a very high statistical significance for stalk height (42,56**) and dry stalk yield (105,43**). Crop fertilization had no statistical signifi-17 cance on cellulose content. 18

Acknowledgment

This research was funded by the Ministry of Education, Science and Technological Development of the Republic of Serbia20(Project No. 451-03-68/2020-14/200216).21

Literature

- Burner, D. M., A., Ashworth, D., Pote, J., Kiniry, D., Belesky, J., Houx, P., Carver, F., Fritschi.: Dual-use bioenergy-livestock
 feed potential of giant miscanthus, giant reed, and miscane. Agricultural Sciences, 2017; 8, pp. 97-112.
- Durić, N., B., Kresović, D., Glamočlija: Sistemi konvencionalne i organske proizvodnje ratarskih useva. Monografija, Izdavač, PKB Agroekonomik, 2015; Beograd.
- Durić, N. and D., Glamočlija: Introduction of mischantus in agricultural production in Serbia and the potential for using 27 biomass for obtaining alternative fuels. International Scientific Conference, Suistainable agriculture and rural development 28 in terms of the Republic of Serbia strategic goals realization within the Danube region support programs for the improve-29 ment of agricultural and rural development, Thematic Proceedings, 2017; pp. 453-470. 30

1

2

8

19

4.	Đurić, N., V. Popović, M. Tabaković, Z. Jovović, M. Čurović, M. Mladenović-Glamočlija, N. Rakoščanin, Đ. Glamočlija:	1
	Morfološke i produktivne osobine miskantusa u promenljivom vodnom režimu. Zbornik naučnih radova Instituta PKB	2
	Agroekonomik, Beograd, 2019; Vol. 25, br. 1-2, pp. 89-98. UDK 167.7.63, ISSN: 0354-1320	3
5.	Fowler, P. A., A. R. McLauchlin, L. M. Hall: The potential industrial uses of forage grasses including Miscanthus. Bio-Com-	4
	posites Centre, Univ. of Wales, Bangor, 2003; pp. 40.	5
6.	Hastings, A., J., Clifton-Brown, M., Wattenbach, P., Stampfl, C. Paul Mitchell, P., Smith: Potential of Miscanthus grasses to	6
	provide energy and hence reduce greenhouse gas emissions. Agronomy for Sustainable Development, 2008; Vol. 28, pp.	7
	465-472.	8
7.	Janković, S., Đ. Glamočlija, S. Prodanović: Energetski usevi. Monografija. Institut za primenu nauke u poljoprivredi, Beo-	9
	grad, 2017; str. 255.	10
8.	Linde-Laursen: Cytogenetic Analysis of Miscanthus 'Giganteus', an Interspecific Hybrid. Hereditas, 1993; Vol. 119, Issue 3,	11
	297-300.	12
9.	Maksimović, J. S.: Uticaj gustine sadnje na zakorovljenost zasada i prinos biomase miskantusa (Miscanthus x giganteus Greef	13
	et Deu.). Doktorska disertacija, Poljoprivredni fakultet, Zemun, 2016; str. 126	14
10.	Mladenović-Glamočlija, M., Vera Popović, Snežana Janković, Đorđe Glamočlija, Milić Čurović, Marko Radović, Milorad	15
	Đokić: Nutrition effect to productivity of bioenergy crop Miscanthus x giganteus in different environments. Agriculture &	16
	Forestry, 2020; Vol. 66 Issue 2: 67-77.	17
11.	Shatalov, A. A., T. Quilhó, H. Pereira: Arundo donax L. reed: new perspectives for pulping and bleaching 1 raw material	18
	characterization. Tappi Journal Peer Reviewed Paper, 2001; Vol. 84, No 1, pp. 1-11.	19
12.	Styles, D., M. B. Jones: Energy crops in Ireland: quantifying the potential life-cycle greenhouse gas reductions of energy-	20
	crop electricity. Biomass and Bioenergy, 2007; Vol. 31, Issues 11–12, pp 759-772.	21
13.	Živanović, Lj, Ikanović, J., Popović, V., Simić, D., Kolarić, Lj., Maklenović, V., Bojović, R., Stevanović, P.: Effect of planting	22
	density and supplemental nitrogen nutrition on the productivity of miscanthus, Romanian Agricultural Research,	23
	www.incda-fundulea.ro, DII 2067-5720 RAR 428, 2014; No. 31, 291-298.	24