

1 Proceedings paper

Sustainable Character of Agroproductive Nodes in Intermon tane Arid Territories of Sonora, Mexico⁺

4 Héctor Tecumshé Mojica-Zárate ^{1*}

- 5 6 7 8 9 10 11 12 13 14
- 18 19

15

16

17

20

21

Citation: Mojica-Zárate, H.T. 23 Ecotechnological Redesign of Sustainability from Integrated Strategic 24 Management in Agroproductive 25 Nodes of the Sonoran Desert, Mexico . *Chem. Proc.* 2021, *3*, x. https://doi.org/10.3390/xxxxx

22

27

28

33

34

Published: date

 Publisher's Note:
 MDPI stays neugo

 tral
 with regard to jurisdictional

 claims in published maps and institutional affiliations.
 32

Copyright: © 2021 by the authors³⁵. Submitted for possible open access⁶⁶ publication under the terms an³⁷ conditions of the Creative Common³⁸⁸ Attribution (CC BY) licens³⁹⁹ (https://creativecommons.org/licens⁴⁰ s/by/4.0/). 41

- ¹ Universidad de la Sierra, Moctezuma, Sonora, México, C.P 84560; hectortecumshe@gmail.com²
- Correspondence: hectortecumshe@gmail.com; Tel.: 00 53 (634) 3453622
- 1st International Online Conference on Agriculture Advances in Agricultural Science and Technology 10– 25 Feb 2022

Abstract: The sustainability of the agro-productive nodes of the Sonoran Desert is a function of environmental and water limitations, the degree of eco-technological inclusion and the strategic diversification of its production processes. The objective of this work is to evaluate the inclusion of the ecotechnological approach of an Agroproductive Node with a Sustainable Trend (ANST) in Moctezuma, Sonora, Mexico from the opening and the adoption of strategic management through the Braden scale to interpret the changes that have occurred in an agroproductive node when it tends towards sustainability. The case study is a node oriented to the production of forage for haymaking. The global evaluation of the activity is tending towards a decrease in sustainability and a value of the environmental compatibility trait of 25 BU. The valuation of the same trait for the new productive approaches included in the node, result from collateral categories that contribute to production and sustainability, among which are distinguished a) Definition and practice of arid tourism with 47 BU, b) Buffer areas for protection of wildlife with 100 BU and c) the use of rescue grazing with 68 BU. The sustainable ecotechnological adoption process in the study node is a process with complex relationships with influence and trend towards what is defined by the SDGs in an agroproductive approach

Keywords: Complex Systems, Sustainable Evaluation, Agroproductive Conversion, Sustainable Management, Natural Resources

1. Introduction

Sonora, Mexico is a world reference in agriculture, in it, there are various categories of agricultural production units that are located throughout the geography of the state. The Gross Domestic Product for this item alone for the year 2020 was 6.5% with a total of 57,669,885 million pesos [1]. These dimensions are based on the conversion of various natural resources, which leads to a context of disturbances and pressures on the ecosystem of origin [2].

Conventional farming represents an antithesis to organic farming. In this productive plane, the use of resources is unlimited as well as the activities that they hold against the natural environment and its components. Therefore, its long-term results represent an environmental mortgage and in the case of the desert and its different niches, under this scenario of intensive non-ecological production, environmental impacts of different intensities and a minimum resilient capacity are the double common factor in the generality of productive units [3, 4, 5, and 10].

In the new way of managing natural resources in arid Mexican territories, a complex and integrative approach that includes water as the first resource and other factors involved in agro-productive units cannot be postponed [4, 5, 11, 12, 13, 14,15]. These factors are related to environmental and climatic risks or catastrophes, at the same time decisive with effective development, one of these cases consists of revitalizing the agro-productive 1

2

3 4

5

6

7

8 9

10

11

12

13

14

15

16

17 18

19

20

21 22

23

24

25

26

27

28 29

30

31

32

nodes through improvement programs and local participation [6,7,8,9, 16-19]. The combination of nodes, as an interconnected network, forming productive networks and their combination with pristine spaces and sustainable management of resources constitutes Sustainable Ecotechnological Agropolis [4, 5, and 16].

The objective of this work is to apply an ecotechnological adoption evaluation methodology to an agroproductive node in Moctezuma, Sonora, Mexico, whose orientation is conventional hay production. As specific research aims, the following are sought: 1) Assess the aptitude of new sustainable activities for the potential development of the study agro-productive node and 2) Define the inclusion of the activity suggested to the node based on the capacity and sustainable and ecotechnological trend from the processes inserted in that activity

2. Methods

2.1 Location of the study area and observation site

The observations were made in a production unit concerning livestock production. The focus of this node originates from a conventional trend in the production of hay, silage, and grazing forage. The location of this node is in the vicinity, southeast of Moctezuma, Sonora, Mexico (Lat 29 ° 42′ 01′′ N - Lng 109 ° 39′ 05′′W); at an average altitude above sea level of 658. The climate corresponds to a semi-warm dry climate with summer rains BS0hw (x'), with maximum and minimum temperatures in the range of -3 to 48 ° C, the hottest period of the year is between June to September, and the coldest month in January.

2.2 Elements of the agroproductive node and its identification

The elements of the agroproductive node or productive unit are all the activities existing in it. Therefore, the primordial activity is evaluated and compared with those activities of possible insertion to the node. To carry out this evaluation, it is necessary to identify:

- a) The vulnerable points of the process, vulnerability traits, importance value, and numerical value
- b) Establish the risks and respective indicators.
- For both cases, a value from 0 to 1 is assigned, defined by the operator of the agroproductive node.
- c) Identify the value of the threat (VT) using equation 1

$$VT = PVV \times RV, \tag{1}$$

Where PVV is the Process Vulnerability Value and RV = Risk Value 33 This value allows the threat to be classified into three ranges: 34 Low or tolerable: Between 0-5. The threat is tolerable. Change 10% of the processes that seem fragile or unsuitable 35 1. for the development of the activity; 36 37 2. Medium or Latent: > 5 and < 10. The threat is latent. Identify and assess possible activities to be carried out that are complementary to the main activity of the node in 50% of these 38 High or imminent: > 10. The threat is imminent. The main activity requires a transformation in more than 50% of 3. 39 40 its processes; 2.3 Selection criteria of the elements or activities of the agroproductive node 41 To choose the activities or elements of the agroproductive node in transition, the fol-42 lowing conditioning criteria were taken into account, applicable to the processes that con-43 stituted them: 44 45 That there are vulnerable processes or with potential risks, that represent a threat to the existence of the node 46

2 of 4

3 of 4

1 2 3 4 5 6	 That the options for the use of natural resources generate a sustainable activity That the results are products or services with a sustainable category That contributes to the development and food security of the community and/or region with minimal environmental impact Finally, biophysical characteristics, vision or projection, technical and financial characteristics are identified to propose a technical alternative.
8	2.4 Definition of the scale of ecotechnological and sustainable adoption
9	To assess each productive activity of the node in an integrated way, it is essential to
10	recognize the emerging attributes of the agro-productive process. Table 1 shows a modi-
11	fied Braden scale. This scale is applicable in the agroproductive production process. The
12	pressure exerted must result in a change in the processes of the agroproductive node,
13	thereby inducing an ecotechnological transition of the node. The change moves from a
14	conventional approach to an ecotechnological state, which reduces the vulnerability and
15	risk of the agroproductive node
16	The degree of adoption from a conventional agricultural production system to an
17	ecotechnological one; is established through an evaluation for each aspect represented in
18	quartiles with which in the end a sum of no more than 100 points is obtained

Table 1. Fundamentals of the Braden Scale adapted for the ecotechnological insertion in the elements of the agroproductive node

Score ¹	1	2	3	4	
Process versatility	Completely rigid	Rigid in some parts	Rigid but open to change	Completely innovative and open to change	
Water requirement	More than 24 hours	Between 12 and 24 hours	One hour a day	Rarely, once a month	
Resilience in natural resources involved	Nil	Low resilience in all	Partial resilience	Full resilience	
Consumption dyna-	Consumed more than	Consumed more than	Consumed twice per	In one season of the	
mism	twice per week	twice per season	season of the year	year	
Contribution to the ecosystem, economy, or food security	Does not offer immedi- ate contribution	Only to the ecosystem	To the ecosystem and flow in the local econ- omy		
Environmental com- patibility	Not compatible	Moderate	High	Very high	
¹ Each value represents a quartile of ecotechnological adoption in the agroproductive node process					

3. Results

3.1. Analysis of the agroproductive process of the original activity

The original activity is oriented to the production of hay from Alfalfa and Sorghum, the vulnerable stages of the process and their respective score. Table 2

Table 2. Identification of vulnerable stages of the process

Process vulnerabil- ity	Vulnerability trait	Importance value	Assigned value*
Planting	The seed loses its germinative capac- ity	High	0.85
Irrigation	Water is not available due to lack of electricity	Very high	0.95

21

22

23

24

25

26

19

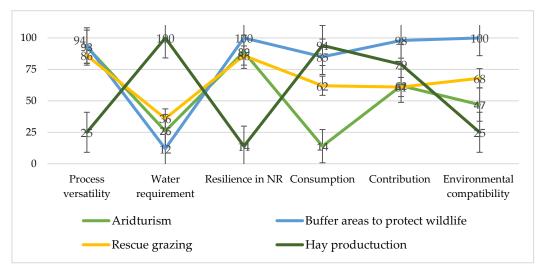
20

З

Growth - Develop-	Lack of water / nutrients	High	0.85			
ment		Ingn	0.05			
Cut – baled	Machinery in bad condition or lack of fuel	Middle	0.50			
Storage	Putrefaction or combustion	Middle - high	0.5 - 0.85			
* Assigned by the operator of the agroproductive node						

* Assigned by the operator of the agroproductive node

3.2. Identification of Risk Indicators and Threat Quantification


Those directly linked to the main activity of hay production were identified as main risks. The faults, shortcomings or deficiencies of the inputs in some part of the process stand out. The assigned values ranged, according to the operator, from 0.23 for germination failure, to 0.97 for the necessary irrigation water for growth; 0.95 for hours of irrigation with electricity and 0.62 for low prevalence of plants in the meadow. Once the equation is applied, it is considered that there is a high or imminent threat to the existence of the node with a value greater than 10.59, so it is essential that the main activity perform a transformation in more than 50% of its processes.

3.3. Conditioning criteria for the adoption of potential productive activities

The main attributes identified according to the criteria defined in the methodology were: a) **Biophysical characteristics:** In this category are soils with 73% of fertility level; existence of native vegetation - pristine in 95% of the area, 5% slope of the land; presence of faunal diversity. b) **Projection of the node:** To be a diverse node in the activities aimed at fulfilling the SDGs. c) **Technical capacity:** Sufficient to moderate, with necessary technical support for the development of low-energy eco-technologies and d) **Financial capacity:** Sufficient for the development of ecological projects that require low investment

3.4. Alternatives for the transition of node of study

The alternative activities identified as suggested use options for the ecotechnological conversion of the node, according to the values obtained through the Braden Scale, were three: The practice of aridtourism (14 - 93 BU), the creation of Areas for the protection of wildlife (12 - 100 BU), and the Rescue grazing use (36 - 86 BU). **Figure** 1 shows a comparison between the original activity and the activities suggested for the transition in ecotechnological - sustainable management of the Moctezuma node, Sonora, Mexico.

Figure 1. Comparison of the level of ecotechnological inclusion in the activities of the agroproductive node under study

4. Discussions

g

The importance of agricultural production systems in arid Mexican territories represent an alternative for food security and for local-regional self-consumption, guaranteeing the existence of inputs and food for local users under a production approach of an ecotechnological nature. The level of ecotechnology adoption is partially influenced by the physical-climatic conditions of the productive environment and the climatic emergency. These severe conditions of a climatic nature occur in various ways during the seasons of the year in the arid territories of the Sonoran Desert, Mexico [5, 11, 13, 16, 18].

5. Conclusions

In the node for hay production in Moctezuma, Sonora, Mexico, diversity traits were identified in the existence of resources, capacities and biophysical aptitudes. This diversity gave rise to other sustainable productive activities, parallel but independent from each other with different ecotechnological processes. The complex integration as well as the link in the optimal and sustainable use of the natural resources of the node derives from the implementation of the integrated strategic management

The activity identified as aridturismo, the care and development of buffer areas to protect wildlife as well as rescue grazing; they were included as integration elements. Its planning and operational development are within sustainability. These activities generate a contribution to the ecosystem with environmental services and simultaneously have positive effects on local users of other agroproductive nodes by acting as primary suppliers.

Both the sustainable and ecotechnological capacity of the node, as well as its gradual changes in the processes over time, were determined in Braden Units. The essential for the pragmatism of sustainability was valued with the various strategies applied in the activities included in the agroproductive node

The rational use and with a sustainable and ecotechnological tendency of endemic natural resources, in the activities of the node, have the following particular features as relevant:

a) Aridtourism values spaces that are direct to the environment and focused on the appreciation of nature, without population overcrowding, it promotes inner peace as well as the use of xeric landscapes for therapeutic walking and the link with the biology of the desert

b) The purpose of the buffer areas to protect wildlife is to conserve undisturbed spaces on the site for the maintenance of migratory and local species or both, vertebrates and other native organisms.

c) The use of rescue grazing provides a healthy soil cover without pressure from trampling or soil erosion. Generates protein from the rescue of livestock that suffer the consequences of prolonged droughts in the region and the low availability of forage

In the case of the agroproductive node under study. To move from a conventional production to an ecotechnological - sustainable one, it was necessary to adopt in the process of activities a strategy that: 1) would attend to local priorities 2) Include in the total of variables the various visualized changes in the local climate, and 3) Give dimension to the availability of quality water. These three are necessary agents for the development of new sustainable techniques and at the same time to maintain a balance between production and the pristine state of the natural system where activities take place.

The above generates a design of a state of complexity, the basis for integrated and ecotechnological management for the creation of entities organized in Sustainable Agropolis.

Author Contributions: Conceptualization, H.M.; methodology, H.M.; software, H.M.; validation, H.M.; formal analysis, H.M.; investigation, H.M.; resources, H.M.; data curation, H.M.; writing — original draft preparation, H.M.; writing — review and editing, H.M.; visualization, H.M.; supervision, H.M.; project administration, H.M. All authors have read and agreed to the published version of the manuscript.

- Funding: This research received no external funding.
- Institutional Review Board Statement: Not applicable.
- **Informed Consent Statement:** Not applicable.
- **Data Availability Statement:** The Data presented in this research work are available on request with the authors of this study
 - Conflicts of Interest: The author declare no conflict of interest.

7 References

1

2 3

5

6

- https://www.inegi.org.mx. Available online: https://www.inegi.org.mx/contenidos/saladeprensa/boletines/2021/pibe/PIBEnt Fed2020.pdf. (accessed on 06 01 2022).
- Acebes, P.; Iglesias-González, Z.; Muñoz-Galvez, F.J. Do Traditional Livestock Systems Fit into Contemporary Landscapes?
 Integrating Social Perceptions and Values on Landscape Change. Agriculture 2021, 11, 1107. <u>https://doi.org/10.3390/agricul-</u>
 <u>ture1111107</u>
- Molina Benavides, R.A.; Campos Gaona, R.; Sánchez Guerrero, H.; Giraldo Patiño, L.; Atzori, A.S. Sustainable Feedbacks of
 Colombian Paramos Involving Livestock, Agricultural Activities, and Sustainable Development Goals of the Agenda 2030. Systems 2019, 7, 52. <u>https://doi.org/10.3390/systems7040052</u>
- Banson, K.E.; Nguyen, N.C.; Sun, D.; Asare, D.K.; Sowah Kodia, S.; Afful, I.; Leigh, J. Strategic Management for Systems Archetypes in the Piggery Industry of Ghana—A Systems Thinking Perspective. Systems 2018, 6, 35. <u>https://doi.org/10.3390/sys-</u> tems6040035
- Cowan, L.; Wright, V. An Approach for Analyzing the Vulnerability of Small Family Businesses. Systems 2016, 4, 3.
 <u>https://doi.org/10.3390/systems4010003</u>
- Maxwell, C.M.; Langarudi, S.P.; Fernald, A.G. Simulating a Watershed-Scale Strategy to Mitigate Drought, Flooding, and Sed iment Transport in Drylands. Systems 2019, 7, 53. <u>https://doi.org/10.3390/systems7040053</u>
- Cheng, L.; Zou, W.; Duan, K. The Influence of New Agricultural Business Entities on the Economic Welfare of Farmer's Families.
 Agriculture 2021, 11, 880. <u>https://doi.org/10.3390/agriculture11090880</u>
- Jayaraman, S.; Dang, Y.P.; Naorem, A.; Page, K.L.; Dalal, R.C. Conservation Agriculture as a System to Enhance Ecosystem
 Services. Agriculture 2021, 11, 718. <u>https://doi.org/10.3390/agriculture11080718</u>
- Ramírez-Orellana, A.; Ruiz-Palomo, D.; Rojo-Ramírez, A.; Burgos-Burgos, J.E. The Ecuadorian Banana Farms Managers' Perceptions: Innovation as a Driver of Environmental Sustainability Practices. Agriculture 2021, 11, 213. <u>https://doi.org/10.3390/ag-</u> <u>riculture11030213</u>
- Langarudi, S.P.; Maxwell, C.M.; Fernald, A.G. Integrated Policy Solutions for Water Scarcity in Agricultural Communities of
 the American Southwest. Systems 2021, 9, 26. <u>https://doi.org/10.3390/systems9020026</u>
- Shongwe, M.I.; Bezuidenhout, C.N.; Sibomana, M.S.; Workneh, T.S.; Bodhanya, S.; Dlamini, V.V. Developing a Systematic Diagnostic Model for Integrated Agricultural Supply and Processing Systems. Systems 2019, 7, 15. <u>https://doi.org/10.3390/sys-</u> tems7010015
- Balanay, R.; Halog, A. A Review of Reductionist versus Systems Perspectives towards 'Doing the Right Strategies Right' for
 Circular Economy Implementation. Systems 2021, 9, 38. <u>https://doi.org/10.3390/systems9020038</u>
- Byomkesh Talukder, B.; Blay-Palmer, A.; Gary W. vanLoon, G.W.; Hipel,K.W. Towards complexity of agricultural sustainability
 assessment: Main issues and concerns. Environmental and Sustainability Indicators 2020 6 10038. <u>https://doi.org/10.1016/j.in-</u>
 dic.2020.100038
- Turner, B.L.; Goodman, M.; Machen, R.; Mathis, C.; Rhoades, R.; Dunn, B. Results of Beer Game Trials Played by Natural Resource Managers Versus Students: Does Age Influence Ordering Decisions? Systems 2020, 8, 37. <u>https://doi.org/10.3390/sys-</u>
 <u>tems8040037</u>
- Malec, K.; Gebeltová, Z.; Mansoor, M.; Appiah-Kubi, S.N.K.; Sirohi, J.; Maitah, K.; Phiri, J.; Pańka, D.; Prus, P.; Smutka, L.; Janků,
 J. Water Management of Czech Crop Production in 1961–2019. Agriculture 2022, 12, 22. <u>https://doi.org/10.3390/agricul-</u>
 <u>ture12010022</u>
- Armenia, S.; Pompei, A.; Castaño Barreto, A.C.; Atzori, A.S.; Fonseca, J.M. The Rural-Urban Food Systems' Links with the
 Agenda 2030: From FAO Guidelines on Food Supply and Distribution Systems to a Dairy Sector Application in the Area of
 Bogota. Systems 2019, 7, 45. <u>https://doi.org/10.3390/systems7030045</u>
- Mahamud, M.A.; Saad, N.A.; Zainal Abidin, R.; Yusof, M.F.; Zakaria, N.A.; Mohd Amiruddin Arumugam, M.A.R.; Mat Desa,
 S.; Md. Noh, M.N. Determination of Cover and Land Management Factors for Soil Loss Prediction in Cameron Highlands,
 Malaysia. Agriculture 2022, 12, 16. https://doi.org/10.3390/ agriculture12010016
- 18. Kurdyś-Kujawska, A.; Sompolska-Rzechuła, A.; Pawłowska-Tyszko, J.; Soliwoda, M. Crop Insurance, Land Productivity and
 the Environment: A Way forward to a Better Understanding. Agriculture 2021, 11, 1108. <u>https://doi.org/10.3390/agricul-</u>
 <u>ture11111108</u>

- Serrano, J.; Shahidian, S.; Machado, E.; Paniagua, L.L.; Carreira, E.; Moral, F.; Pereira, A.; de Carvalho, M. Floristic Composition:
 Dynamic Biodiversity Indicator of Tree Canopy Effect on Dryland and Improved Mediterranean Pastures. Agriculture 2021, 11,
- 3 1128. <u>https://doi.org/10.3390/agriculture1111128</u>