
2.02

Essential Oil Composition of *Ambrosia Artemisiifolia* and Its Antibacterial Activity Against Phytopathogens⁺

Pedja Janaćković *, Nemanja Rajčević, Milan Gavrilović, Jelica Novaković, Maja Radulović, Milica Miletić, Tamara Janakiev, Ivica Dimkić and Petar D. Marin

Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia; nmanja@bio.bg.ac.rs(N.R.); mgavrilovic@bio.bg.ac.rs(M.G.); ejelica@bio.bg.ac.rs(J.N.); maja.radulovic@bio.bg.ac.rs(M.R.); milica.miletic@bio.bg.ac.rs(M.M.); tamara.janakiev@bio.bg.ac.rs(T.J.); (ivicad@bio.bg.ac.rs(I.D.); pdmarin@bio.bg.ac.rs(P.D.M.)

- * Correspondence: pjanackovic@bio.bg.ac.rs
- Presented at the 2nd International Electronic Conference on Diversity (IECD 2022)—New Insights into the Biodiversity of Plants, Animals and Microbes, 1–15 March 2022; Available online: https://iecd2022.scifo-rum.net/ (accessed on).

Abstract: The composition of essential oil from aerial parts of Ambrosia *artemisiifolia* L. from Bor (Serbia) was analyzed. The essential oil was obtained by hydrodistillation and analyzed by gas chromatography (GC-FID, GC-MS). In total, 45 compounds were detected (98.49% of the total). The essential oil was dominated by monoterpene (45%) and sesquiterpene (38.51%) hydrocarbons. The principal constituents were germacrene D (25.3%), limonene (21.6%), and α -pinene (15.7%). The microdilution method was used to determine the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) of the essential oil against five Gram-negative phytopathogenic strains. Essential oil exhibited strong antimicrobial activity against two *Xanthomonas campestris* strains and one referent and one natural isolate of *Ervinia amylovora*, causative agents of black rot and fire blight.

Keywords: biological control; invasive species; chemical composition; monoterpene hydrocarbons; sesquiterpene hydrocarbons

1. Introduction

Ambrosia L. (Asteraceae, Heliantheae, Ambrosiinae) includes nearly 35–40 species [1,2] distributed mainly in America [1]. The genus comprises annual or perennial [3] ane-mophilous plants [4].

Ambrosia artemiisifolia L. is an annual herb native to North America [5,6], but it is widespread in many parts of the world [7]. Ragweed was introduced from North America into Europe in the 19th century [5], and it grows in the central and southern parts of the continent, usually in waste places near urban areas [8]. Nowadays, it is known in most European countries [9]. This plant is also widespread in Serbia, especially in the northern part of the country [10].

Ragweed has a strong reproductive capacity. Each plant can produce a large number of seeds and pollen, causing numerous allergic reactions [11].

Only a few previous studies focused on the analysis of the composition of the essential oil of *A. artemisiifolia* and showed that different classes of specialized metabolites are present in the essential oil. Monoterpenes and sesquiterpenes were dominant compounds [6,12].

To the best of our knowledge, there is no data regarding the antibacterial activity of *A. artemisiifolia* essential oil.

Academic Editor(s): Ben-Erik Van Wyk

Published: date: 14 March 2022

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses /by/4.0/). The objectives of the present study were to determine the composition of the EOs of ragweed and investigate its potential use as a biological control agent.

2. Material and Methods

2.1. Plant Material

Plant material of *A. artemisiifolia* was collected in October 2020, during the flowering period near the town Bor, in Eastern Serbia. Plants were identified using floras of Serbia and Europe [3,10]. Voucher specimens were deposited at the Herbarium of the University of Belgrade—Faculty of Biology, Institute of Botany and Botanical Garden "Jevremovac" (BEOU 17821). Standard herbarium acronym follows Index herbariorum [13].

2.2. Isolation of Essential Oil

Dried flowering aerial parts (200 g) were chopped and placed in a round-bottomed flask, and then 2l of cold distilled water was added. Hydrodistillation was performed 3 times for 3 h using the Clevenger-type apparatus, according to the procedure described in Ph. Eur. 6 [14]. The obtained oils were stored at 4 °C before the GC analyses.

The extraction yield of oil was calculated according to the equation given: $y = V/W \times 100$ where y is the oil yield (%, w/w), V is the mass of extracted plant oil (g), and W is the mass of dried plant material (g).

2.3. GC-FID and GC/MS Analyses

The GC-FID and GC/MS analyses were conducted according to the procedure described in [15].

2.4. Antibacterial Activity

2.4.1. Bacterial Strains and Growth Conditions

Antibacterial activity was tested using five Gram-negative phytopathogenic strains *Pseudomonas syringae* pv. *syringae* GSPB 1142, *Xanthomonas* pv. *campestris* NCPPB 528 and NCPPB 1144, *X. arboricola* pv. *juglandis* CFBP 2528, *Erwinia amylovora* NCPPB 683, *E. amylovora* 16–13. The bacterial strains were cultured in TY medium (composition g/L: tryptone 5, yeast extract 5, CaCl₂ × 2 H₂O 0.9) for 48 h at 30 °C. Suspensions were prepared in phosphate saline buffer (1 × PBS, Sigma Aldrich, USA) in the final concentration of 10⁶ CFU/mL.

2.4.2. MIC Assay

The microdilution method [16] was used to determine the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) of the *A. artemisiifolia* essential oil. Two-fold serial dilutions with TY medium in 96-well microtiter plates were performed. Except for the sterility control, each well was inoculated with 20 μ L of bacterial suspensions (1 × 10⁶ CFU/mL), reaching a final volume of 200 μ L. Final essential oil concentrations in the first well ranged from 0.008–2 mg/mL. Besides a negative control, a sterility control, and control for the solvent (DMSO), the antibiotics streptomycin (Sigma-Aldrich, USA) was tested as positive controls in the concentration range from 0.003–0.2 mg/mL. The final concentration of dimethyl sulfoxide (DMSO) as a solvent was 10%. All dilutions were done in duplicate, and the results are expressed in mg/mL. After reaching the final volume, 22 μ L of resazurin as an indicator in the final concentration of 0.675 mg/mL was added, and the 96-well microtiter plates were incubated for 48 h at 30 °C. According to the resazurin reaction, the lowest concentration, which showed no change in color was defined as the MIC. The lowest concentration that after sub-culturing did not show bacterial growth overnight was defined as the MBC value.

3.1. A. Artemisiifolia EO Composition

The yield of essential oil was 0.03%. The oil was transparent yellow, with a sharp and strong smell. The conducted GC-FID, and GC-MS analyses resulted in the detection of 45 compounds (41 identified, 4 unidentified), making on average 98.49% of the total oil. All identified compounds are listed in Table 1.

The results showed that monoterpene hydrocarbons and sesquiterpene hydrocarbons were the dominant constituents in the EO (45% and 38.51%, respectively). Oxygenated monoterpenes and oxygenated sesquiterpenes were also present, but in smaller quantities (3.42% and 11.54%, respectively). The most dominant constituents were germacrene D (25.3%), limonene (21.6%), and α -pinene (15.7%).

No.	RI 1	Compound	[%] ²			
1	903	Santolina Triene	0.10			
2	929	α-Pinene	15.75			
3	944	Camphene	0.33			
4	969	β-Phellanderene	0.94			
5	973	β-Pinene	1.77			
6	987	Myrcene	4.54			
7	1027	Limonene	21.59			
8	1139	trans-Pinocarveol	0.21			
9	1144	1,3,8-p-Menthatriene	0.31			
10	1164	Borneol	0.63			
11	1166	Ni (109,69,93,81,41)	0.30			
12	1285	Bornyl Acetate	1.81			
13	1290	Lavandulyl Acetate	0.46			
14	1337	δ-Elemene	0.29			
15	1375	α-Copaene	0.22			
16	1384	β-Bourbonene	0.58			
17	1390	β-Cubebene	0.27			
18	1391	β-Elemene	0.33			
19	1419	(E)-Caryophyllene	3.22			
20	1429	β-Copaene	0.47			
21	1435	<i>trans-α</i> -Bergamotene	0.53			
22	1453	α-Humulene	1.09			
23	1457	(E)- β -Farnesene	0.28			
24	1475	β-Chamigrene	0.48			
25	1482	Germacrene D	25.26			
26	1484	β-Selinene	1.35			
27	1496	Bicyclogermacrene	1.92			
28	1508	β-Bisabolene	0.91			
29	1511	Lavandulyl isovalerate	0.51			
30	1515	δ-Amorphene	0.39			
31	1523	δ-Cadinene	0.75			
32	1556	Germacrene B	0.18			
33	1559	Ni sesquiterpene (159,177,135,41,91)	0.44			
34	1576	Spathulenol	1.98			
35	1582	Caryophyllene oxide	3.06			
36	1608	Humulene epoxide II				
37	1610	β-Atlantol	0.39			

Table 1. Chemical constituents of the essential oil of investigated A. artemisiifolia.

0.92 0.25
0.25
0.29
0.35
0.66
1.59
0.81
0.35
48.43
45.01
3.42
50.05
38.51
11.54
1.00
98.49

¹ The retention indices (RI) were experimentally determined using the standard method involving retention times (tR) of n-alkanes, which were injected under the same chromatographic conditions. ² Contents are given as percentages of the total essential oil composition; Ni = not identified.

3.2. Antibacterial Activity of A. artemisiifolia EO

Tested essential oil exhibited strong antimicrobial activity against both *X. campestris* strains, and against one referent and one natural isolate of *E. amylovora*. Strains were inhibited by lower concentrations which could be designated as similar detected in the positive control of streptomycin. Moderate activity was detected against *P. syringae* pv. *syringae*, while *X. arboricola* pv. *juglandis* was the most resistant strain tested. All inhibitory and bactericidal activities of EO were below the detected inhibitory concentrations of DMSO as solvent. Results of tests on *A. artemisiifolia* oil antibacterial activity are given in Table 2.

Dhystomethogonic Strains	Ambrosia EO (mg/mL)		DMSO (%)		Streptomycin (mg/mL)	
Phytopathogenic Strains —	MIC	MBC	MIC	MBC	MIC	MBC
Xanthomonas pv. campestris NCPPB 528	0.004	0.008	1.875	2.500	0.025	0.100
Xanthomonas pv. campestris NCPPB 1144	0.063	0.125	0.469	0.625	0.050	0.100
Erwinia amylovora NCPPB 683	0.016	0.031	7.500	10.000	0.006	0.100
Erwinia amylovora 16–13	0.047	0.063	7.500	10.000	0.012	0.100
Pseudomonas syringae pv. syringae GSPB 1142	0.500	2.000	>10.000	-	0.006	>0.200
Xanthomonas arboricola pv. juglandis CFBP 2528	1.500	2.000	>10.000	-	0.003	0.013

Table 2. Antibacterial activity of A. artemisiifolia EO.

- not detected in the range of tested concentrations.

4. Discussion

In the present study, the most abundant compounds were germacrene D (25.3%), limonene (21.6%), and α -pinene (15.7%). These results are congruent with the scarce literature data [6,12]. There are some differences in the relative amounts of major classes of compounds between EOs of *A. artemisiifolia* and related species. The oil of *A. artemisiifolia* is much more abundant in monoterpene hydrocarbons and sesquiterpene hydrocarbons, in contrast with *A. trifida* [17].

It was shown that significant bactericidal activity of *A. artemisiifolia* essential oil was effective even in very dilute solutions against a broad range of human opportunistic bacterial strains, including *Staphylococcus aureus*, *Escherichia coli*, *Pseudomonas aeruginosa*, *Klebsiella pneumonia*, *Bacillus subtilis*, *Sarcina lutea*, *Shigella flexneri* and *Salmonella enteritidis* [12]. In general, plant extracts and essential oils contain numerous compounds like sesquiterpenoids, which can exhibit antimicrobial activity [18]. Although many sesquiterpene lactones have been related to allergenic effects, some previous studies showed how isabelin, the lactone isolated from *A. artemisiifolia*, was able to inhibit soil-borne bacteria [19]. That might imply the potential of these molecules to modify the surrounding soil microbiota and associated pathogens eventually. In the present study, *A. artemisiifolia* essential oil exhibited strong antimicrobial activity against *X. campestris* and *E. amylovora* strains, causative agents of black rot and fire blight. Thus, our results indicate that essential oil produced by invasive plant *A. artemisiifolia* could be a valuable source of compounds with great potential for biological control of economically important phytopathogens.

Author Contributions: Conceptualization, P.J. and P.D.M.; methodology, P.J., N.R., M.G., J.N., M.R., M.M., T.J. and I.D.; fieldwork, M.R.; writing—original draft preparation, P.J., M.R., M.M, T.J. and I.D.; writing—review and editing, P.J., N.R., M.G., J.N., I.D. and P.D.M. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Serbian Ministry of Education, Science and Technological Development, Grant No. 451-03-68/2020-14/200178.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are presented in the paper. Additional data available on request due to restrictions.

Conflicts of Interest: The authors declare no conflict of interest.

References

- Wang, P.; Kong, C.H.; Zhang, C.X. Chemical composition and antimicrobial activity of the essential oil from *Ambrosia trifida* L. *Molecules* 2006, 11, 549–555.
- 2. Dahl, Å.; Strandhede, S.O.; Wihl, J.-Å. Ragweed An allergy risk in Sweden? *Aerobiologia* **1999**, *15*, 293–297.
- Tutin, T.G.; Persson, K.; Gutermann, W. Compositae: Ambrosia. In *Flora Europaea*; Tutin, T.G., Heywood, V.H., Burges, N.A., Moore, D.M., Valeentine, D.H., Walters, S.M., Webb, D.A., Eds.; Cambridge University Press: Cambridge, UK, 1976; pp. 142– 143.
- 4. Martin, M.D.; Chamecki, M.; Brush, G.S.; Meneveau, C.; Parlange, M.B. Pollen Clumping and Wind Dispersal in an Invasive Angiosperm. *Am. J. Bot.* **2009**, *96*, 1703–1711.
- Essl, F.; Biró, K.; Brandes, D.; Broennimann, O.; Bullock, J.M.; Chapman, D.S.; Chauvel, B.; Dullinger, S.; Fumanal, B.; Guisan, A. Biological Flora of the British Isles: *Ambrosia artemisiifolia*. J. Ecol. 2015, 103, 1069–1098.
- Han, C.; Shao, H.; Zhou, S.; Mei, Y.; Cheng, Z.; Huang, L.; Lv, G. Chemical Composition and Phytotoxicity of Essential Oil from Invasive Plant, *Ambrosia artemisiifolia* L. *Ecotoxicol. Environ. Saf.* 2021, 211, 111–879.
- 7. Wan, F.H.; Wang, R. The damage and prevention of common ragweed. Agric. Bull. Sci. Technol. 1998, 5, 24–25.
- 8. Jovanović, S. *Ecological Study of ruderal Flora and Vegetation in the City of Belgrade;* Faculty of Biology, University of Belgrade: Belgrade, Serbia, 1994.
- 9. Hansen, A. Ambrosia, L. In *Flora Europaea*; Tutin, T.G., Heywood, V.H., Eds.; Cambridge University Press: Cambridge, UK, 1976; Volume 4, pp. 142–143.
- Gajić, M. Asterales-Asteraceae. In *Flora of Serbia VII*; Josifović, M., Stjepanović, L., Kojić, M., Nikolić, V., Eds.; Department of Natural and Mathematical Sciences, Serbian Academy of Sciences and Arts: Belgrade, Serbia, 1975; Volume 7, pp. 63–65.
- Lambelet, B.; Clot, B.; Keimer, C. Ragweed (Ambrosia) Progression and Its Health Risks: Will Switzerland Resist This Invasion? Swiss Med. Wkly. 2005, 135, 538–548.
- 12. Chalchat, J.C.; Maksimovic, Z.A.; Petrovic, S.D.; Gorunovic, M.S.; Dordevic, S.; Mraovic, M. Chemical composition and antimicrobial activity of *Ambrosia artemisiifolia* L. essential oil. *J. Essent. Oil Res.* **2004**, *16*, 270–273.
- 13. Thiers, B. Index Herbariorum: A Global Directory of Public Herbaria and Associated Staff. New Zork Botanical Garden's Virtual Herbarium. 2019. Available online: http://sweetgum.nybg.org/ih/.
- 14. European Directorate for the Quality of Medicines. European Pharmacopoeia, 6th ed.; Council of Europe: Brussel, Belgium, 2007.

- Radulović, M.; Rajčević, N.; Gavrilović, M.; Novaković, J.; Stešević, D.; Marin, P.D.; Janaćković, P. Five wild-growing *Artemisia* (Asteraceae) Species from Serbia and Montenegro: Essential oil composition and its Chemophenetic Significance. *J. Serbian Chem. Soc.* 2021, *86*, 1281–1290.
- 16. Dimkić, I.; Ristivojević, P.; Janakiev, T.; Berić, T.; Trifković, J.; Milojković-Opsenica, D.; Stanković, S. Phenolic profiles and antimicrobial activity of various plant resins as potential botanical sources of Serbian propolis. *Ind. Crops Prod.* **2016**, *94*, 856–871.
- Sarić-Krsmanović, M.; Umiljendić, J.G.; Radivojević, L.; Rajković, M.; Šantrić, L.; Đurović-Pejčev, R. Chemical composition of Ambrosia trifida essential oil and phytotoxic effect on other plants. Chem. Biodivers. 2020, 17, e1900508.
- 18. Vaou, N.; Stavropoulou, E.; Voidarou, C.; Tsigalou, C.; Bezirtzoglou, E. Towards Advances in Medicinal Plant Antimicrobial Activity: A Review Study on Challenges and Future Perspectives. *Microorganisms* **2021**, *9*, 2041.
- 19. Molinaro, F.; Tyc, O.; Beekwilder, J.; Cankar, K.; Bertea, C.M.; Negre, M.; Garbeva, P. The effect of isabelin, a sesquiterpene lactone from *Ambrosia artemisiifolia* on soil microorganisms and human pathogens. *FEMS Microbiol. Lett.* **2018**, *365*, fny001.