

# MACROMOLECULAR CHARACTERISTICS OF SULFATED POLYSACCHARIDES FROM Chaetoceros muelleri



#### Miranda-Arizmendi V.<sup>1</sup>, Carvajal-Millan E.<sup>\* 1</sup>, Fimbres-Olivarria D.<sup>2</sup>, Miranda-Baeza A.<sup>3</sup>, Martínez-Robinson K.<sup>1</sup>, De Anda-Flores Y.<sup>1</sup>, Lizardi-Mendoza J.<sup>1</sup> & Rascón-Chu A.<sup>1</sup>

<sup>1</sup> Research Center for Food and Development (CIAD, AC). Carretera Gustavo Enrique Astiazaran Rosas No. 46, Col. La Victoria, 83304 Hermosillo, Sonora, Mexico. <sup>2</sup> University of Sonora, 83000 Hermosillo, Sonora, Mexico.

<sup>3</sup> Laboratory of Cultivation Technologies of Marine Organisms. State University of Sonora, 85875 Navojoa, Sonora, Mexico.

### INTRODUCTION

Algae are considered a valuable source of polysaccharides with important bioactive characteristics that benefit human health, such as anti-tumor, antioxidant, and antiviral properties. Despite the recognized importance of these organisms, microalgae have been virtually unexplored relative to macroalgae (1).

*Chaetoceros muelleri* is a cosmopolitan planktonic diatom microalga present in the Sea of Cortez. Its biomass is essential in aquaculture as it is a source of high-value products. Several studies on sulfated exopolysaccharides (sEPS) from macroalgae have been reported; however, information on sEPS from microalgae is scarce (2,3).

For a better understanding of the different potential applications of polysaccharides, their macromolecular characteristics, microstructure and bioactivity must be considered, since these parameters determine their functional properties (4). Consequently, studying this structure-function relationship in polysaccharides from unexplored sources such as those present in some microalgae may represent the starting point in developing new bioactive products or biomaterials.

## OBJECTIVE

This research aims to generate new knowledge about the macromolecular characteristics of sulfated polysaccharides from the diatom *Chaetoceros muelleri*.

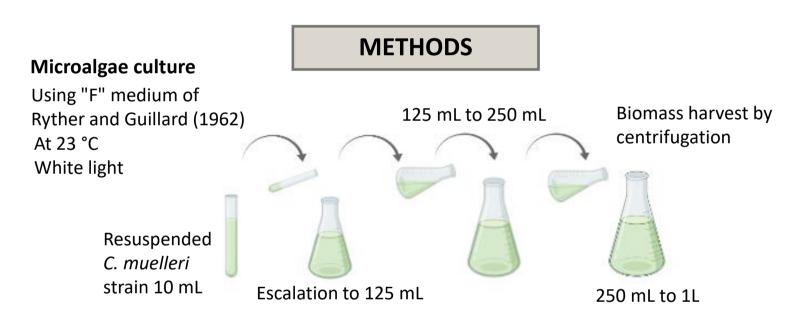
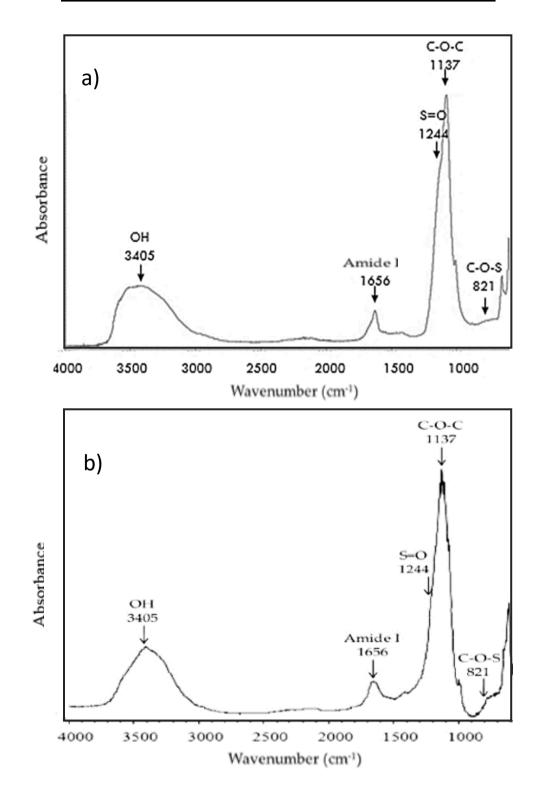
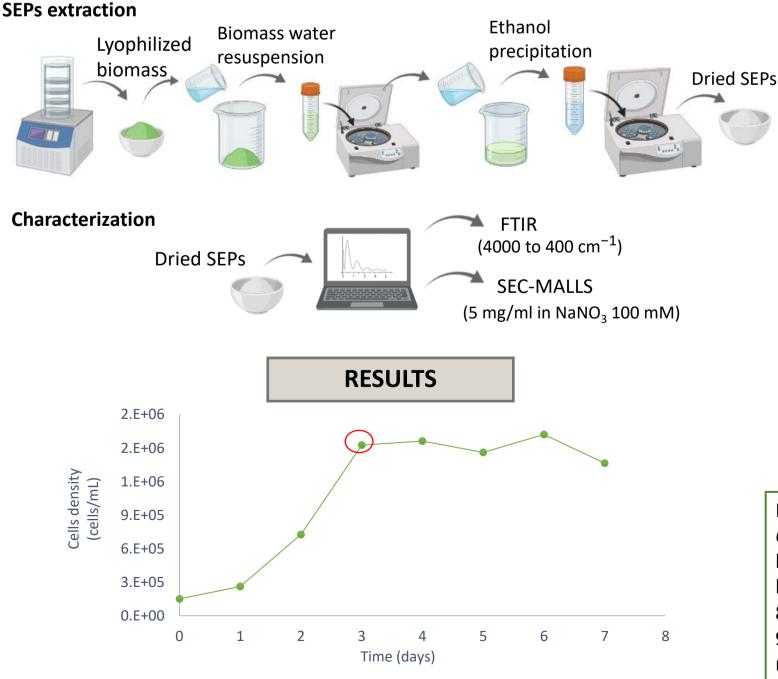
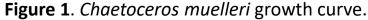






 Table 1. Chaetoceros muelleri culture yields

| Cells concentration (cells/mL) | ~ 1,500,000 |
|--------------------------------|-------------|
| Biomass yield (g/L)            | 0.66        |
| Polysaccharide yield (% w/w)   | 2.3         |







**Figure 2**. Comparison of Fourier Transformation Infrared (FTIR) spectra of SEPs extracted from: a) *Chaetoceros muelleri;* b) *Navicula sp* (4). The arrows indicate the absorption bands.

**Table 2.** Macromolecular characteristics of sEPS fromChaetoceros muelleri

| Molecular    | Intrinsic        | Polydispersity |
|--------------|------------------|----------------|
| weight (kDa) | viscosity (mL/g) | index          |
| 945          | 653              | 1.14           |

#### CONCLUSION

It was possible to extract sulfated polysaccharides from *Chaetoceros muelleri*. The yield obtained was 2.3% (w/w dry biomass). The sulfated polysaccharides presented characteristic bands by Fourier transform infrared spectroscopy (FTIR) (3405 to 821 cm<sup>-1</sup>). The molecular weight and intrinsic viscosity values were 945 kDa and 653 mL/g, respectively, which are in the range reported for other polysaccharides from similar sources.

**REFERENCES** (1) Wijesekara, I., Pangestuti, R., Kim, S.K., 2011. Biological activities and potential health benefits of sulfated polysaccharides derived from marine algae. *Carbohydr Polym* 84, 14–21. (2) Jiang, J.L., Zhang, W.Z., Ni, W.X., Shao, J.W. 2021. Insight on structure-property relationships of carrageenan from marine red algal: A review. *Carbohydr Polym* 257, 117642. (3) Geresh, S., Mamontov, A., Weinstein, J. 2002. Sulfation of extracellular polysaccharides of red microalgae: preparation, characterization and properties. *J Biochem Biophys Methods* 50(2-3), 179–187. (4) Fimbres-Olivarría, D, López-Elías, J.A., Carvajal-Millan, E., Márquez-Escalante, J.A., Martínez-Córdova L.R., Miranda-Baeza, A., Enríquez-Ocaña, F., Valdéz-Holguín, J.E., Brown-Bojórquez, F. 2016. *Navicula* sp. sulfated polysaccharide gels induced by Fe(III): Rheology and microstructure. *Int J Mol Sci* 17 (8), 1238.