

MOLECULAR AND FUNCTIONAL CHARACTERIZATION OF HUMAN SW 872 ADIPOCYTES AS A MODEL SYSTEM FOR TESTING NUTRACEUTICAL PRODUCTS

Chiara Olivieri, Marco Ruzza, Fationa Tolaj, Lorenzo DaDalt and Paolo Magni

CELL MODELS FOR IN VITRO STUDIES OF ADIPOSE TISSUE

MURINE CELL MODELS

- <u>3T3- L1</u>
- 3T3-F442A
- CH3H10T1/2
- OP9
- Mouse embryonic fibroblast (MEF)

HUMAN CELL MODELS

- Adipose tissue derived stem cells (ASC)
- Primary preadipocytes
- Cell lines derived from human tumors

HUMAN LIPOSARCOMA SW 872 CELL LINE

- DERIVED FROM A HUMAN LIPOSARCOMA
- PREADIPOCYTE PHENOTYPE
- FIBROBLASTIC MORPHOLOGY
- MONOLAYER
- DMEM-F12 +10% FBS

SW 872: DIFFERENTIATION IN MATURE ADIPOCYTES

AIM OF THE STUDY

CHARACTERIZATION OF HUMAN SW 872 CELLS

TRIGLYCERIDE ACCUMULATION

GLUCOSE UPTAKE & pAkt MODULATION

PROINFLAMMATORY CYTOKINE RELEASE PHYTOCHEMICAL EFFECT EVALUATION

TRIGLYCERIDES ACCUMULATION

OIL-RED-O Analysis

TRIGLYCERIDES QUANTIFICATION

SW 872 non-differentiated (A) and differentiated (B)

n=3, mean±SD. ***P<0.001 (one-way ANOVA multiple comparison)

n=3, mean±SD. ***P<0.001 (one-way ANOVA multiple comparison)

GLUCOSE UPTAKE: INSULIN TIME & DOSE-RESPONSE (FACS)

n=3, mean±SD. *P<0.05, **P<0.01, ***P<0.001 (one-way ANOVA multiple comparison)

PRO-INFLAMMATORY CYTOKINES SECRETION: INTERLEUKIN-6 & INTERLEUKIN-8 (ELISA)

n=3, mean±SD. **P<0.01, ***P<0.001 (one-way ANOVA multiple comparison)

CAMEROONIAN SPICE EXTRACTS: MOLECULAR MECHANISMS OF ACTION TO PROMOTE CARDIO-METABOLIC HEALTH

Oxidative Stress Modulation by Cameroonian Spice Extracts in HepG2 Cells: Involvement of Nrf2 and Improvement of Glucose Uptake

Achille Parfait Atchan Nwakiban ¹⁽⁰⁾, Stefania Cicolari ²⁽⁰⁾, Stefano Piazza ², Fabrizio Gelmini ³, Enrico Sangiovanni ²⁽⁰⁾, Giulia Martinelli ²⁽⁰⁾, Lorenzo Bossi ², Eugénie Carpentier-Maguire ⁴, Armelle Deutou Tchamgoue ⁵, Gabriel A. Agbor ⁵⁽⁰⁾, Jules-Roger Kuiaté ¹⁽⁰⁾, Giangiacomo Beretta ³⁽⁰⁾, Mario Dell'Agli ^{2,*(0)} and Paolo Magni ^{2,6,*}

Hydroethanolic plant extracts from Cameroon positively modulate enzymes relevant to carbohydrate/lipid digestion and cardio-metabolic diseases

Dietary Cameroonian Plants Exhibit Anti-Inflammatory Activity in Human Gastric Epithelial Cells

Achille Parfait Atchan Nwakiban ^{1,2}, Marco Fumagalli ², Stefano Piazza ², Andrea Magnavacca ², Giulia Martinelli ², Giangiacomo Beretta ³, Paolo Magni ^{2,4}, Armelle Deutou Tchamgoue ⁵, Gabriel Agbor Agbor ⁵, Jules-Roger Kuiaté ¹, Mario Dell'Agli ^{2,*} and Enrico Sangiovanni ²

Hydromethanolic Extracts from *Adansonia digitata* L. Edible Parts Positively Modulate Pathophysiological Mechanisms Related to the Metabolic Syndrome

Stefania Cicolari ^{1,†}⁽⁰⁾, Marco Dacrema ^{2,†}, Arold Jorel Tsetegho Sokeng ^{3,†}, Jianbo Xiao ⁴⁽⁰⁾, Achille Parfait Atchan Nwakiban ⁵⁽⁰⁾, Carmen Di Giovanni ², Cristina Santarcangelo ², Paolo Magni ^{1,6,*}⁽⁰⁾ and Maria Daglia ^{2,4,*}⁽⁰⁾

CAMEROONIAN SPICE EFFECT ON DIFFERENTIATED SW 872 ADIPOCYTES

	Triglyceride Reduction	Glucose Uptake Stimulation	ROS Production	IL–6 Reduction	IL–8 Reduction
Xylopia aethiopica	-14.5%		+55.8%		-21.1%
Xylopia parviflora	-13.8%		-50.5%		-36.8%
Scorodophloeus zenkeri	-18.5%				
Monodora myristica	-15.3%		-40%		-24.3%
Tetrapleura tetraptera	-13.8%	+40.8%	-27.4%	-29.7%	
Echinops giganteus	-11.3%		-43.6%	-29%	
Afrostyrax lepidophyllus	-16.5%		-24.6%		
Dichrostachys glomerata	-17.4%			-40%	
Aframomum melegueta	-13%	+41.7%		-43.1%	
Aframomum citratum	-16%				-58.6%
Zanthoxylum leprieurii	-13.4%	+56.6%			-32.7%

CONCLUSIONS

The intracellular lipids accumulation shows a higher accumulation of triglycerides in differentiated cells than non-differentiated.

The glucose uptake shows that non-differentiated SW 872 cells allow twice as much glucose input than differentiated cells, despite non-differentiated cells do not respond to insulin.

The phosphorylated Akt fraction in differentiated cells increases in a time dependent manner more markedly than in non-differentiated cells.

The secretion of pro-inflammatory cytokines, show an increase in IL-6 associated to differentiation; and it is also been observed that secretion of IL-6 increases from T0 to T7 in non-differentiated cells. On the contrary, differentiated cells show a lower release of IL-8 than non-differentiated cells.

Plant extracts of Cameroonian show a modulation of the glucometabolic and inflammatory aspects in SW 872 cells, suggesting that these cells could be used for the screening of functional compounds or extracts of natural origin.

AKNOWLEDGEMENTS

Paolo Magni

Chiara Olivieri

Fationa Tolaj

Lorenzo DaDalt

Achille Parfait Atchan Nwakiban

Thank you for your time and attention

