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1. Background 

Exercise training (ET) is recommended by the International Health Authorities as it 

provides benefits in healthy individuals and patients belonging to several clinical settings 

[1–3]. ET contrasts oxidative stress, by decreasing radical oxygen species (ROS) and other 

oxidant molecules and/or increasing antioxidant ones [4]. On the other hand, because of 

increased oxygen consumption, during exercise the production of ROS may overcome the 

capacity of the endogenous antioxidant system to detoxify them, producing oxidative 

stress [5–7]. ET is a natural activator of Sirtuin 1 (SIRT1), which is a NAD+-dependent 

deacetylase acknowledged as a life span- and health span-prolonging agent [8–10]. SIRT1 

activated during ET can contrast aging and age-associated diseases by increasing the cel-

lular antioxidant capacity [10–12].However, the ET-related effects, including SIRT1 acti-

vation, strongly depend on the type, intensity, and duration of the training [13–16]. Other 

natural activators of SIRT1 include polyphenols, such as resveratrol, and several phenolic 

plants extracts whose antioxidant properties are widely acknowledged [17,18]. Supple-

mentation of antioxidants can contribute to preventing or contrasting oxidative stress and 

its associated cellular damage. Indeed, supplements, especially those containing vitamins 

and other micronutrients, are commonly used to improve athletes’ wellness and perfor-

mance [19–21]. Despite this, the effects of antioxidant supplementation have not yet been 

elucidated, especially in athletes performing endurance training [20]. Therefore, in this 

study, we compared the effects on SIRT1 and antioxidant capacity in endurance athletes 

using or not antioxidant supplements to investigate whether an exogenous source of an-

tioxidants could interfere with ET-related effects. 

2. Methods 

Thirty-two endurance athletes, that are middle-distance runners (MDR), and 14 age-

matched sedentary volunteers (CTR) were enrolled. All participants signed informed con-

sent and the study got approval from the local Ethics Committee (Observational Study n. 

86/2020). MDR belonged to an amateur sports association called “Atletica Salerno”. They 

were divided into two groups. One of them (MDR-S) assumed every day an antioxidant 

supplementation (S) consisting of 240 mg vitamin C and 15 mg vitamin E, together with 
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861 mg sodium, 555 mg chlorine, 381 mg potassium, 66 mg magnesium. The other group 

did not use any antioxidant supplementation (MDR-noS). We recorded athletes’ data, in-

cluding those regarding training regimen as well as information concerning alcohol con-

sumption and tobacco use, and dietary habit. Blood samples were collected in fasting con-

ditions from each participant. Peripheral Blood Mononuclear Cells (PBMCs) were isolated 

by Ficoll-Paque density gradient. Serum samples were obtained by centrifugation at 1500× 

g for 10 min. Aliquots of serum and PBMCs were frozen at −80 °C until analysis.SIRT1 

mRNA and activity were measured in PBMCs by Real-Time PCR and fluorimetric assay, 

respectively. Total oxidative status (TOS) and total antioxidant capacity (TEAC) were 

measured in plasma by colorimetric assay and oxidative stress index (OSI) was deter-

mined by TOS/TEAC ratio. 

3. .Results 

The study population consisted of 14 CTR, 14 MDR-noS, and 18 MDR-S. There were 

no differences in age, tobacco and alcohol use as well as in dietary habits between the two 

groups of athletes, and between athletes and sedentary controls. CTR had a BMI higher 

than MDR-S and MDR-noS (both, p = 0.0001), while no differences between MDR-S and 

MDR-noS were found. In addition, neither training time/week nor training fre-

quency/week differed between MDR-S and MDR-noS. MDR demonstrated higher levels 

of SIRT1 mRNA compared with CTR (p = 0.0387). Notably, MDR-noS showed higher lev-

els than CTR (p = 0.0136) while MDR-S did not differ from CTR. No differences between 

MDR-S and MDR-noS were found (Figure 1, panel A). MDR showed higher levels of 

SIRT1 activity compared with CTR (p = 0.0055). MDR-noS had the highest value, signifi-

cantly higher compared both with CTR (p = 0.0003) and MDR-S (p = 0.0012) (Figure 1, 

panel B). 

 

Figure 1. Caption. 

As shown in Figure 2 (panel A), no differences in TOS levels were found among the 

groups.MDR showed higher levels of TEAC compared with CTR (p = 0.0001). Notably, 

both the MDR-S and MDR-noS showed higher levels than CTR (MDR-noS vs CTR, p = 

0.0003 and MDR-S vs CTR, p = 0.0007). No differences were found between MDR-S and 

MDR-noS (Figure 2, panel B). CTR demonstrated the highest levels of OSI (TOS/TEAC) 

than the other groups (CTR vs MDR, p = 0.0002; CTR vs MDR-noS, p = 0.0015 and CTR vs 

MDR-S, p = 0.0086). No differences were found between MDR-S and MDR-noS (Figure 2, 

panel C). 
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Figure 2. Caption. 

A statistically significant correlation by linear regression analysis between SIRT1 ac-

tivity and TEAC (p = 0.002, r2 = 0.2345) was found. This correlation was determined by the 

results of MDR-noS (p = 0.001, r2 = 0.8029) (Figure 3, panel A). Conversely, an inverse cor-

relation between SIRT1 activity and OSI was found in MDR (p = 0.013, r2 = 0.213). This 

finding was determined by the inverse correlation between the two considered parame-

ters in MDR-noS (p < 0.0001, r2 = 0.2154) (Figure 3, panel B). 
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Figure 3. Caption. 

4. Conclusions 

This study demonstrated that TEAC increased in MDR compared with CTR irrespec-

tive of an antioxidant supplementation intake. SIRT1 mRNA and activity increased in 

MDR-noS but not in MDR-S when compared with CTR. Notably, SIRT1 activity is strongly 

correlated with TEAC in MDR-noS but not in MDR-S. An exogenous source of antioxi-

dants seems to hinder the role of endurance training as a natural activator of SIRT1. 
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