Tephritids Gut Microbionts: Diversity, Volatile Emissions and Their Impact on Fly Behaviour

Nazma Akter Tithi

School of Natural Sciences, Macquarie University, NSW 2109, Australia

nazma.tithi@mq.edu.au

Background

- Ecologically relevant interactions between insects and associated microorganisms are facilitated by insect olfactory responses to microbial volatile organic compounds (mVOCs), where these act as infochemicals
- The effect of mVOCs on insect behaviour is broad.
- It has been shown that they provide cues for suitable habitat, food, mating, or oviposition sites, and more

- Although many microbial cues are attractive and exploited by insects, they may also negatively affect the insect response, that is, causing deterrence
- The exploitation of mVOCs that signal to insects the suitability of mating, oviposition and foraging, or nearby environmental hazards, is recognised as a possible avenue for pest management
- The fruit flies of the family Tephritidae are globally devastating pests of fruits and vegetables
- Like other insects, the alimentary tract of tephritids, especially the midgut which is the primary site of digestion and absorption, commonly contains a complex biota of diverse microorganisms including bacteria and fungi
- The association between the significant horticultural pest Tephritidae, the true fruit flies, and their gut microorganisms has been well-studied, but there has been relatively little research on the mVOCs of these microorganisms, and how these mVOCs can influence tephritid behaviour.

Bacterial Attraction to Tephritids

Microbial Diversity in Fruit Fly Gut

Enterobacteriaceae	Bacillaceae	Yersiniaceae	Erwiniaceae	Vibrionaceae	Enterococcaceae
Citrobacter freundii	Bacillus anthracis	Serratia fonticola	Enterobacter agglomerans	Vibrio sp.	Enterococcus faecalis
C. koseri	B. cereus	S. liquefaciens	Erwinia herbicola		
Citrobacter sp.	B. cibi	S. marcescens	Pantoea agglomerans	Phyllobacteriaceae	Flavobacteriaceae
Enterobacter asburiae	B. pumilis	S. odorifera	P. dispersa	Defluvibacter sp.	Flavobacterium sp.
E. cloacae	B. subtilis	Serratia sp.			
E. faecalis	B. licheniformis		Saccharomycetaceae	Comamonadaceae	Streptococcaceae
E. sakazakii		Staphylococcaceae	Hanseniaspora sp.	Delftia acidovorans	Lactococcus lactis
E. amnigenus	Pseudomonadaceae	Staphylococcus aureus	Pichia sp.		
E. hormaechei	Pseudomonas aeruginosa	S. carnosus	Candida sp.	Hafniaceae	Listeriaceae
Enterobacter sp.	P. brenneri	S. xylosus		Hafnia alvei	Listeria sp.
Erwinia amylovora	P. fluorescens		Aerococcaceae		
Candidatus Erwinia dacicola	P. libanensis	Aeromonadaceae	Aerococcus viridans	Lactobacillaceae	Moraxellaceae
Escherichia coli	P. maltophilia	Aeromonas hydrophila		Leuconostoc sp.	Moraxella sp.
Klebsiella oxytoca	P. mucidolens	Aeromonas sp.	Acetobacteraceae		
K. pneumoniae	P. oryzihabitans		Asaia sp.,	Microbacteriaceae	
K. ozaenae	P. putida	Pectobacteriaceae	Acetobacter tropicalis	Microbacterium sp.	
K. planticola		Pectobacterium carotovorum			
Klebsiella sp.	Morganellaceae	P. cypripedii	Brucellaceae	Propionibacteriaceae	
Kluyvera intermedia	Morganella morganii		Ochrobactrum sp.	Propionibacterium acnes	
Lelliottia amnigena	Morganella sp.	Xanthomonadaceae			
Proteus sp.	Providencia alcalifaciens	Stenotrophomonas sp.	Nocardiaceae	Bacteroidaceae	
Proteus vulgaris	P. rettgeri		Rhodococcus sp.	Bacteroides fragilis	
Raoultella ornithinolytica	P. stuartii	Leptotrichiaceae			
R. terriaena		Streptobacillus sp.			

K. Pneumoniae

E. agglomerans

C. Freundii

Anastrepha ludens S. Aureus

K. Pneumoniae C. Freundii E. agglomerans

P. Pudita

K. oxytoca C. Freundii

Ammonia	Trimethylpyrazine	2-phenylethanol	3-hydroxy-2-butanone
Methylamine	acetic acid	2- methyl-1-propanol	methanol
Dimethylamine	3-methylbutanal	3-(methylthio)-1-propanol	methyl thioacetate

trimethylamine 2-methylpropanamine 2-methylbutanamine 3-methylbutanamine indole 1-pyrroline 2,3,4,5-tetrahydropyridine, pyrazine 2,5-dimethylpyrazine 2-methyl-5-isopropylpyrazine

Future Works

Benzaldehyde
phenol
Dimethylsulfide
Dimethyldisulfide
2-butanone
2-pentanone
2-hexanone
3-hydroxybutanone
2-phenylethanone

Ethyl acetate isoamyl acetate isobutyl acetate phenethyl acetate 3-methyl-1-butanol butyl isocyanatoacetate 1-phenyl-2-propanone 2-methylpropanol 2-methylbutanol 2-butanol
2-heptanone
2-nonanone
ethyl tiglate
methyl thiocyanate
3-methylbutanol
2-ethylhexanol
2-phenylethanol
3-methyl-1-butanol

mVOCs Identified in Attractive Bacterial Volatile Emission

- As significantly limited records are available on mVOC mediated attraction to fruit flies, individual mVOCs are needed to be extensively studied
- More work needs t explore the diversity of gut associated fungi/yeasts and their effect on fly behaviour
- The understanding of the effect of mVOCs on fruit fly behaviour will broaden the scope to identify lead chemicals to develop chemical lures to contribute in pest management