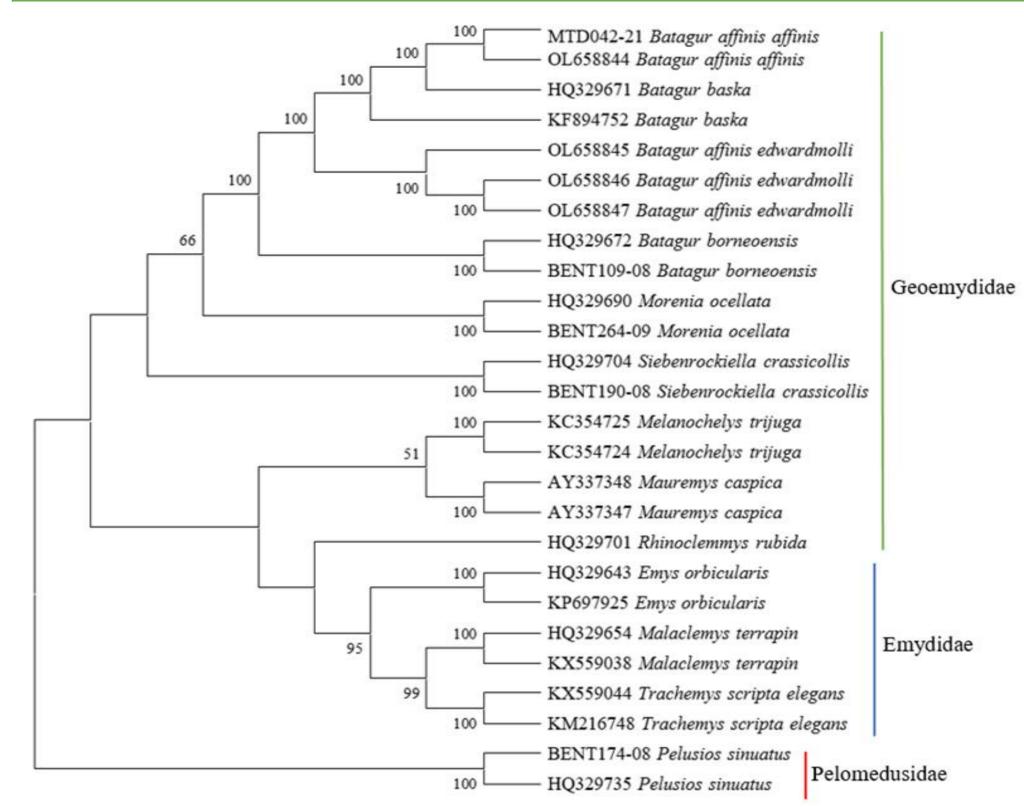


Conservation Status of Globally Testudines River Terrapins Based on DNA Barcoding

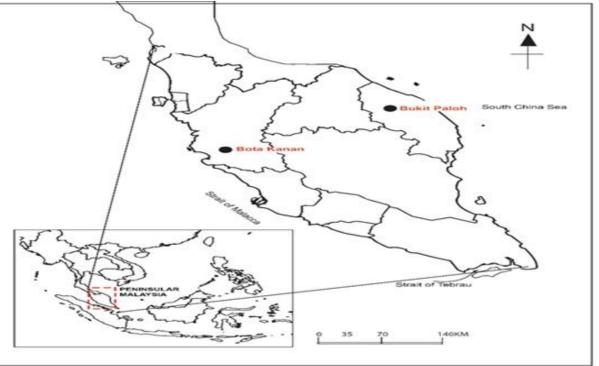
Mohd Hairul Mohd Salleh 1, 2, and Yuzine Esa 1, 3, *

1 Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; 2 Royal Malaysian Customs Department, Persiaran Perdana, Presint 2, 62596 Putrajaya, Malaysia; 3 International Institute of Aquaculture and Aquatic Sciences, Universiti Putra Malaysia, Lot 960 Jalan Kemang 6, 71050 Port Dickson, Negeri Sembilan, Malaysia; *Correspondence: yuzine@upm.edu.my; Tel.: +60397694933

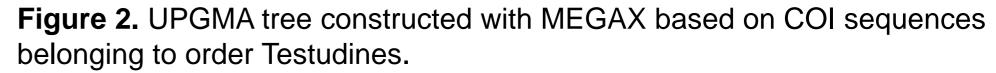
ABSTRACT

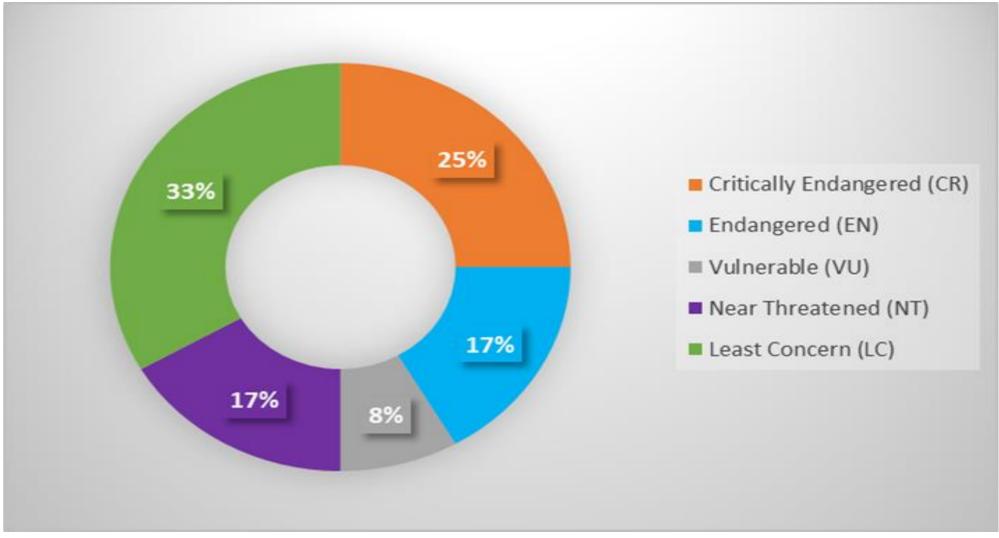

River terrapins are turtle types that live in freshwater or brackish water. There are 12 species of river terrapin worldwide. A total of 26 COI sequences of worldwide river terrapins were used in this study. The study aims to determine the global utility of river terrapin DNA barcoding using novel COI sequences and compare them to other COI sequences previously published in BOLD systems and GenBank. Nevertheless, the conservation status of the river terrapins is also taken into account for sustainability priority. The sequences contained three families, as determined by the UPGMA tree, with 33% of river terrapins classified as least concern (LC) and 25% classified as critically endangered (CR). The genomic and bioinformatics analyses of river terrapins reported here may serve as a foundation for future research on this species throughout the world.

OBJECTIVE


To define the global utility of river terrapin DNA barcoding via novel COI sequences and compare them to other COI sequences earlier available in BOLD systems and GenBank.

MATERIALS AND METHODS


RESULTS AND DISCUSSION



- □ There were four *B. affinis* individuals in this study who came from two different population regions that crossed the east and west coasts of the Malaysia Peninsula (Figure 1).
- Venipuncture techniques were used to draw blood from the species through the subcarapacial venous plexus (SVP) and another through the internal jugular vein.
- □ The research and field permit approval number is B-00335-16-20, issued by the Department of Wildlife and Parks, peninsular Malaysia.
- We use the COI Tuntong set primers 5'-CGCGGAATTAAGCCAACCAG-3' (forward) and 5'-TTGGTACAG-GATTGGGTCGC-3' (reverse) (Guntoro and Riyanto, 2020).
- IT sequences were downloaded from GenBank, and five were mined from BOLD Systems, yielding 26 sequences for this work.
- MEGAX (Kumar et al., 2018) was used to align the sequences that were made and those that were found.
- Phylogenetic analysis was done using MEGAX with 1000 bootstrap replicates and the Unweighted Pair Group Method with Arithmetic Mean (UPGMA) as the best method (Sneath and Sokal 1973).
- Excel 2016 was used to make the pie charts that show all river terrapins' conservation statuses.

Figure 1. Sampling sites of *Batagur affinis* in peninsular Malaysia. **Table 1.** List of river terrapins species studied through DNA barcoding with the BOLD IDs of their respective COI sequences and the GenBank

Figure 3. The conservation status of the river terrapins is based on the IUCN Red List.

CONCLUSION

In conclusion, the COI marker continues to be an effective barcode marker for river terrapin species, providing vital evidence that may be utilised to distinguish and recognise genera and species of these Testudines organisms. The genomic and bioinformatics analyses of river terrapins reported here may serve as a foundation for future research on this species throughout the world, allowing for more practical conservation work for this threatened species.

accession of each species.

Scientific Name	English Name	GenBank Accession	BOLD ID	IUCN Red List	Locallity
Batagur baska	Northern river terrapin	KF894752	GBGCR2852-19	CR	India
Batagur baska	Northern river terrapin	HQ329671	GBGCR2716-19	CR	India
Batagur borneoensis	Painted terrapin	HQ329672	GBGCR2717-19	CR	Indonesia
Batagur borneoensis	Painted terrapin	None	BENT109-08	CR	Indonesia
Morenia ocellata	Bengal eyed terrapin	HQ329690	GBGCR2724-19	EN	Myanmar
Morenia ocellata	Bengal eyed terrapin	None	BENT264-09	EN	Myanmar
Malaclemys terrapin	Diamondback terrapin	HQ329654	GBGC11262-13	VU	America
Malaclemys terrapin	Diamondback terrapin	KX559038	GBGCR2938-19	VU	America
Emys orbicularis	European pond terrapin	HQ329643	GBGC11273-13	NT	Unknown
Emys orbicularis	European pond terrapin	KP697925	None	NT	Germany
Melanochelys trijuga	Indian pond terrapin	KC354725	GBGC11418-13	LC	India
Melanochelys trijuga	Indian pond terrapin	KC354724	GBGC11419-13	LC	India
Rhinoclemmys rubida	Mexican spotted terrapin	HQ329701	GBGCR2766-19	NT	Mexico
Trachemys scripta elegans	Red-eared terrapin	KX559044	GBGCR1038-18	LC	America
Trachemys scripta elegans	Red-eared terrapin	KM216748	GBGCR1008-15	LC	America
Pelusios sinuatus	Serrated hinged terrapin	None	BENT174-08	LC	Southern Africa
Pelusios sinuatus	Serrated hinged terrapin	HQ329735	GBGC11221-13	LC	Southern Africa
Siebenrockiella crassicollis	Smiling terrapin	HQ329704	GBGCR2769-19	EN	Unknown
Siebenrockiella crassicollis	Smiling terrapin	None	BENT190-08	EN	Unknown
Mauremys caspica	Striped-neck terrapin	AY337348	GBGC0806-06	LC	Iran
Mauremys caspica	Striped-neck terrapin	AY337347	GBGC0805-06	LC	Bahrain
Batagur affinis	Southern river terrapin	None	MTD042-21	CR	Malaysia
Batagur affinis affinis	Southern river terrapin	OL658844	HYT001-21	CR	Malaysia
Batagur affinis edwardmolli	Southern river terrapin	OL658845	HYT002-21	CR	Malaysia
Batagur affinis edwardmolli	Southern river terrapin	OL658846	HYT003-21	CR	Malaysia
Batagur affinis edwardmolli	Southern river terrapin	OL658847	HYT004-21	CR	Malaysia

REFERENCES

- Guntoro, J., & Riyanto, A. (2020). The very low genetic variability on Aceh Tamiang's (Indonesia) population of Painted Terrapin (*Batagur borneoensis*) inferred by cytochrome oxidase I (CO I) and D-loop (control region). *Biodiversitas Journal of Biological Di-versity*, 21(6).
- Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: molecular evolutionary genetics analysis across computing platforms. *Molecular biology and evolution*, 35(6), 1547.
- Sneath, P.H.A. and Sokal, R.R. (1973). Numerical Taxonomy: The Principles and Practice of Numerical Classification. WF Freeman & Co., San Francisco; 573 p.

ACKNOWLEDGEMENTS

We want to acknowledge the Universiti Putra Malaysia for funding my study through a Graduate Research Fellowship (GRF). In addition, we would also like to express our gratitude to the Universiti Putra Malaysia Research Committee for their assistance and support of this research project. Furthermore, we thank the Turtle Conservation Society of Malaysia and the Department of Wildlife and National Parks, Peninsular Malaysia, for their collaboration.