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Abstract  
The study of type III RNases constitutes an important area in molecular biology. It is known that the 

pac1+ gene encodes a particular RNase III that shares low amino acid similarity with other genes despite 
having a double-stranded ribonuclease activity. Bioinformatics methods based on sequence alignment may 
fail when there is a low amino acidic identity percentage between query sequence and others with similar 
functions (remote homologues) or a similar sequence is not recorded in the database. Quantitative Structure-
Activity Relationships (QSAR) applied to protein sequences may allow an alignment-independent prediction 
of protein function. These sequences QSAR like methods often use 1D sequence numerical parameters as the 
input to seek sequence-function relationships. However, previous 2D representation of sequences may 
uncover useful higher-order information. In the work described here we calculated for the first time the 
Spectral Moments of a Markov Matrix (MMM) associated with a 2D-HP-map of a protein sequence. We 
used MMMs values to characterize numerically 81 sequences of type III RNases and 133 proteins of a 
control group. We subsequently developed one MMM-QSAR and one classic Hidden Markov Model 
(HMM) based on the same data. The MMM-QSAR showed a discrimination power of RNAses from other 
proteins of 97.35% without using alignment, which is a result as good as for the known HMM techniques. 
We also report for the first time the isolation of a new Pac1 protein (DQ647826) from Schizosaccharomyces 
pombe, strain 428-4-1. The MMM-QSAR model predicts the new RNase III with the same accuracy as other 
classical alignment methods. Experimental assay of this protein confirms the predicted activity. The present 
results suggest that MMM-QSAR models may be used for protein function annotation avoiding sequence 
alignment with the same accuracy of classic HMM models. 
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1. Introduction   
 
RNase III is a double-strand-specific ribonuclease (dsRNase) that usually makes staggered cuts in both 

strands of a double helical RNA, although in some cases it cleaves once in a single-stranded bulge in the 
helix 1, 2. The primary biological function of this system is the specific processing of rRNA and mRNA 
precursors 3-5 but it has also been implicated in other diverse phenomena such as mRNA turnover 6, 
conjugative DNA transfer 7, antisense RNA-mediated regulation and other 8, 9. For instance, Dicer and 
Drospha are type III RNases responsible for the generation of short interfering RNAs (siRNAs) from long 
double-stranded RNAs during RNA interference (RNAi). Also, the cellular processing of shRNAs shares 
common features with the biogenesis of naturally occurring miRNA such as cleavage by nuclear type III 
RNase Drosha, export from the nucleus, and processing by a cytoplasmic type III RNase Dicer, and 
incorporation into the RNA-induced silencing complex (RISC). Each step has a crucial influence on the 
efficiency of RNAi.10-13 It involves both RNase proteins in several important biological processes as for 
instance the function of Dicer on the vascular system regulating embryonic angiogenesis probably by 
processing miRNAs, which regulate the expression levels of some critical angiogenic regulators in the cell.14 
Recently, RNAi has moved from a purely experimental technique to the stage of potential clinical 
applications such as possible use the treatment of spinocerebellar ataxia or amyotrophic lateral sclerosis15. 
Many other dsRNases have been characterized from a variety of prokaryotic and eukaryotic sources and 
RNase III from Escherichia coli is an archetype of this class of enzymes 6, 16, 17. The RNase III family 
consists of a growing number of enzymes that includes at least 33 bacterial and 22 eukaryotic enzymes 18. 
There have been numerous reports of dsRNase activities in eukaryotic cells, some of which exhibited 
properties consistent with a role in pre-rRNA processing 19-21.  

One of the best candidates for eukaryotic RNase III homologues is the Pac1 RNase from 
Schizosaccharomyces pombe 22-24. The Pac1 product is derived from Schizosaccharomyces pombe pac1+ 
gene expression, which is also involved in the regulation of sexual development 25, possibly through a 
mechanism that involves the processing of certain small nucleolar RNAs (snRNAs) 26. Pac1 works in 
eukaryotes as dsRNase and shares a functional similarity to RNase III from E. coli. This fact was proved 
either by measuring the ability of Pac1 to degrade double-stranded RNA in vitro or by expressing pac1+ in E. 
coli, where it produced an activity that converted dsRNA into acid-soluble products 23. Despite these 
observations the Pac1 gene product shows low homology with other RNAse III enzymes, particularly with 
those ones belonging to bacteria. The homology between the different RNase III enzymes varies in the range 
20 to 84% depending on their evolutionary distance, suggesting a low level of primary structure conservation 
27. It has been reported that antibodies prepared against Pacl RNase have failed to react with RNase III 23. 
The Pac1 gene product from Schizosaccharomyces pombe belongs to subclass II of the RNase III family, 
which is characterized by the presence of an N-terminal extension and includes fungal RNase III 27, 28. This 
contains 363 amino acids (aa) and only its C-terminal 230 residues share 25% amino acid identity with the 
Escherichia coli ribonuclease III 23.  

Methods based on sequence alignment have revealed a low amino acidic identity (20–40 %) for the pac1+ 
gene product with other typical RNases III, either isolated from bacteria or even from species that are 
genetically close 27, 29. However, experimental observations show Pac1 protein to be a dsRNAse enzyme. 
This relatively low degree of conservation probably reflects the species-specificity of RNase III, which 
prevents genetic complementation between members of the RNase III family 30.  

All of the facts discussed above hinder the prediction of the Pac1 gene product as an RNase III-like 
enzyme using computational methods based on sequence alignment. In fact, Bioinformatics methods based 
on sequence alignment may fail in general for cases of low sequence homology between the query and the 
template sequences deposited in the data base. The lack of function annotation (defined biological function) 
for the sequences deposited in databases and used as templates for function prediction constitutes another 
weakness of alignment approaches 31, 32. Recently, a group of researchers published in PROTEOMICS 
(2006) a review 33 on the growing importance of machine learning methods for predicting protein functional 
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class independently of sequence similarity. In this review the authors make reference to various papers on the 
topic, including their own work 34-45. These methods often use as the input 1D sequence numerical 
parameters specifically defined to seek sequence-function relationships. For instance, the so-called pseudo 
amino acid composition approach 46, 47 based on 1D sequence coupling numbers has been widely used to 
predict subcellular localization, enzyme family class, structural class, as well as other attributes of proteins 
based on their sequence similarity 45, 48-74. Alternatively, some authors generalized molecular indices that are 
classically used for small molecules 75, 76 to describe protein sequences, such as the generalization of Broto–
Moreau indices by Caballero and Fernández et al. 77. On the other hand, many authors have introduced 2D or 
higher dimension representations of sequences prior to the calculation of numerical parameters. This 
constitutes an important step in order to uncover useful higher-order information not encoded by 1D 
sequence parameters 78-98. In addition, 2D graphs have been used for proteins and DNA sequences by other 
researchers. For example, Zupan and Randić used spectral-like and zigzag representations. These authors 
suggested an algorithm for encoding long strings of building blocks (like four DNA bases, twenty natural 
amino acids, or all 64 possible base triplets) using “zigzag” or “spectrum-like” representations 99. 
Hydrophobic cluster analysis (HCA) constitutes another well known technique for the 2D representation of 
protein sequences 100. Randić et al. ultimately approached protein representations by using 2D schemes based 
on nucleotide triplet codons or virtual genetic code 101 and we introduced Hydrophobicity-Polarity (HP) 2D 
Cartesian or lattice-like representations for proteins related to plant metabolism 93 

In this work, we propose to use the Spectral Moments of a Markov Matrix (MMM) associated to a 2D-
HP-graph to numerically characterize protein sequences and seek a QSAR model to predict type III RNAses 
without alignment. Firstly, we derived Hydrophobicity-Polarity (HP) 2D Cartesian or lattice-like 
representations (also called maps or graphs) for RNase III and control group protein sequences 93. We then 
calculated the MMM values of order k (symbolized as SRπk) to characterize the protein sequence. Spectral 
Moments for many kinds of graphs have been used before for quantitative structure-activity relationships 
(QSAR) studies on proteins 102-112. We subsequently developed a classifier to connect protein sequence 
information (represented by the SRπk values) with the classification of sequences as RNAse III or not. In 
general, different kinds of classifiers have been used to derive protein sequence QSAR models 113, 114. We 
selected a Linear Discriminant Analysis (LDA), which is a simple but powerful technique 115-121. The use of 
this MMM-QSAR model enabled us to predict a novel recombinant Pac1 (rPac1) protein as an RNase III-like 
enzyme from a new isolate of Schizosaccharomyces pombe. Prediction was also supported by profile Hidden 
Markov Model (HMM) analysis, submission to BLASTp and InterPro 122 servers and demonstrated by 
experimental evidence.  

 
2. Materials and methods 
 
2.1 Computational methods.  
 
A Markov Model (MM), also called MARCH-INSIDE, was used to codify information about 81 RNase 

III protein sequences belonging to prokaryote and eukaryote species downloaded from the GenBank 
database. Briefly, our methodology considers as states of the Markov Chain (MC) any atom, nucleotide or 
amino acid (aa) depending on the kind of molecule to be described 123, 124. Therefore, MM deals with the 
calculation of the probabilities (kpij) with which the charge distribution of aa moves from any aa in the 
vicinity i at time t0 to another aa j along the protein backbone in discrete time periods until a stationary state 
is achieved 125, 126. 

Each RNase III sequence was labelled by its accession number; see Table I in the supplementary material 
(SM). The control group consists of 133 proteins, which were selected from 2184 high-resolution proteins in 
a structurally non-redundant subset of the Protein Data Bank (PDB); most of the data were published by 
other authors to distinguish enzymes and non-enzymes without alignment 127 (see Table II in the SM). Many 
researchers have demonstrated the possibility of predicting protein function from sequences 128 and we used 
2D-HP graphs to encode information about RNase III amino acid sequences 93. We then calculated for the 
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first time the HPπk values for these graphs. As can be seen from the discussion above, we selected HPπk based 
on the utility of other non-stochastic Spectral Moments 103-112 as well as other MMMs and other stochastic 
parameters 102, 129-131. 

It is important to point out that this 2D graphical representation for proteins is similar to those previously 
reported for DNA 89, 91, 132 but the 20 different amino acids are regrouped into HP classes instead of using 4 
types of bases. These four groups characterize the HP physicochemical nature of the amino acids as polar, 
non-polar, acidic or basic 133. The 2D-HP graph for the deduced amino acid sequence of rPac1 protein, 
obtained from Schizosaccharomyces pombe strain 428-4-1 (uploaded by our group with accession number 
DQ647826), is shown in Figure 1. It is worth noting that 363 amino acids are rearranged in a 2D space 
compacting protein representation. Each amino acid in the sequence is placed in a Cartesian 2D space 
starting with the first monomer at the (0, 0) coordinates. The coordinates of the successive amino acids are 
calculated as follows: 

a) Increase by +1 the abscissa axis coordinate for an acid amino acid (rightwards-step) or: 
b) Decrease by –1 the abscissa axis coordinate for a basic amino acid (leftwards-step) or: 
c) Increase by +1 the ordinate axis coordinate for a polar amino acid (upwards-step) or: 
d) Decrease by –1 the ordinate axis coordinate for a non-polar amino acid (downwards-step). 

 
Figure 1. 2D Cartesian representation for amino acid sequence of rPac1 protein from 

Schizosaccharomyces pombe strain 428-4-1; GenBank Accession number DQ647826. Note that a node may 
contain more than one amino acid, which ensures graph compactness. 

 
2.2 2D-HP graph MMMs used as sequence numerical descriptors.  
 
After the representation of the sequences we assigned to each graph a stochastic matrix 1Π. Note that the 

number of nodes (n) in the graph is equal to the number of rows and columns in 1Π but may be equal or even 
smaller than the number of amino acids or DNA bases in the sequence. The elements of 1Π are the 
probabilities 1pij of reaching a node ni with charge Qi moving through a walk of length k = 1 from another 
node nj with charge Qj 134: 

( )1
∑
=

⋅
= n

lm
lil

j
ij

Q

Q
p

α
 

Where αij equals 1 if the nodes ni and nj are adjacent in the graph and equal to 0 otherwise. Qj is equal to 
the sum of the electrostatic charges of all amino acids placed at this node. It then becomes straightforward to 



 5

carry out the calculation of the spectral moments of 1Π in order to numerically characterize the protein 
sequence: 
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Where Tr is called the trace and indicates that we sum all the values in the main diagonal of the matrices 
kΠ = (1Π)k, which are the natural powers of 1Π. The present class of MMMs encodes in a stochastic manner 
the distribution of the amino acid properties (charge) through all of the nodes placed at different distances in 
the 2D-HP lattice. Expansion of expression (2) for k = 0 gives the order zero MMM0 (HPπ0); for k = 1 the 
short-range MMM1 (HPπ1), for k = 2 the middle-range MMM2 (HPπ2), and for k = 3 the long-range MMMs. 
This extension is illustrated for the linear graph n1-n2-n3, which is characteristic of the sequence (Asp-Glu-
Asp-Lys); please note that the central node contains both Glu and Asp: 
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All calculations of HPπk values for protein sequences of both groups were carried out with our in-house 

software BIOMARKS version 1.0 ®, including sequence representation 135. We proceeded to upload a row 
data table with eleven HPπk values for each sequence (k = 0, 1, 2,…10) and grouping variable RNaseIII-score 
= 1 (for RNAses) and –1 (for control group sequences) to statistical analysis software 136. The overall 
methodology is represented schematically in order to improve the understanding of our approach (see Figure 
2). 
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Figure 2. Schematic representation of the steps given in this work. 

 
 
2.3 Statistical analysis. K-Means cluster analysis.  
 
The negative group was selected from 2184 proteins with diverse functions (enzymes and non-enzymes) 

recorded in the PDB, as mentioned before. Our negative subset was designed according to K-Means cluster 
analysis (k-MCA) 137. The method consists of carrying out a partition of the starting group made up by a non- 
RNase III series of proteins into several statistically representative clusters of sequences. Thus, one may 
select the members to conform to the negative subset from all of these clusters. This procedure ensures that 
the main protein classes (as determined by the clusters derived from k-MCA) will be represented in the 
model control group, thus allowing the representation of the entire ‘experimental universe’. The spectral 
moment series was explored as clustering variables in order to carry out k-MCA. The procedure described 
above is represented graphically in Figure 3, where a cluster analysis was carried out to select a 
representative sample for the control group. 
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Figure 3. k-MCA procedure for control group design. 
 
 
2.4 Linear Discriminant Analysis.  
 
LDA forward stepwise analysis was carried out for variable selection to build up the model 115-121. All of 

the variables included in the model were standardized in order to bring them onto the same scale. 
Subsequently, a standardized linear discriminant equation that allows comparison of their coefficients was 
obtained 138. The square of Mahalanobis’s distance (D2) and Wilk’s (λ) statistic (λ = 0 perfect discrimination, 
being 0<λ<1) were examined in order to assess the discriminatory power of the model. Pac1 protein was 
submitted to BLASTp to show graphically the similarity of the sequence compared to other RNases III. Each 
sequence presented in this study was also submitted to the InterPro server 122 in order to compare our 
methodology with other classical sources of predictive functional annotation. InterPro consists of a database 
of protein families, domains and functional sites in which identifiable features found in known proteins can 
be applied to unknown protein sequences. 

 
3. Experimental Section 
 
3.1 Strains and culture media. The Schizosaccharomyces pombe strain 428-4-1 was routinely grown in 

Yeast Extract (YEB) medium at 30 ºC during 12 h. Bacterial strain Escherichia coli DH5α was grown in 
Luria Broth (LB). Transformed bacteria were recovered in the same LB medium but supplemented with 
carbenicillin at 100 µg/mL. Media were also supplemented with bacteriological agar when required.  

3.2 Total DNA extraction. A colony from Schizosaccharomyces pombe strain 428-4-1 was inoculated in 
5 mL of YEB medium and grown at 30 ºC during 12 hours until OD600 = 0.5. From this culture, 250 µL was 
transferred to 50 mL of the same medium and grown overnight at the same temperature. When the OD600 = 
0.8, cells were collected by centrifugation and broken using small glass pearls. A cellular pellet was re-
suspended in 500 µL of sterile water at 50 °C and the extract was separated from cellular debris by 
centrifugation. Total DNA was purified using a total DNA extraction kit (Qiagen GmbH, Germany). Total 
DNA solution was measured at 260 nm in a GENESYS 10 spectrophotometer, reaching a concentration of 
3.8 µg/µL. The solution was also run on agarose gel (0.8%) and high integrity was seen. 

3.3 Primer design. Forward (PAC5') 5'-cccATGGGACGGTTTAAGAGGCATC-3' and reverse (PAC3') 
5'-gtggggttaacgggcaaacTTAG-3' primers were designed based on the previously reported pac1+ coding 
sequence from Schizosaccharomyces pombe mutant snm1-1. The primer sequences show the restriction sites 
Nco1 and Kpn1 introduced at the 3' and 5' ends, i.e. the first ATG and the stop TTA codon. The coding 
regions are shown in capital letters 139.  

3.4 PCR amplifications. Amplification of the pac1+ gene from Schizosaccharomyces pombe was 
performed by standard PCR from its total DNA. The reaction mixture containing 10 ng of template, 1mM of 
each dNTP, 1.5 mM MgCl2, 2 µM of each PAC5' and PAC3' primers, 1x buffer Taq Pol (Gibco BRL) and 2.5 
U Taq Pol (Gibco) was completed to a total volume of 50 µL. The PCR was carried out using a thermo-
cycler (Perkin-Elmer 2400) programmed as follows: 5 minutes initial template denaturation at 94 °C, cycle 
steps: 1 minutes template denaturation at 94 °C, 2 minutes primer annealing at 45 °C, 2 minutes primer 
extension at 72 °C for 30 cycles; plus a final extension step at 72 °C for 5 minutes 29, 30, 139. PCR reaction 
showed a band coinciding with the size of the reported pac1+ ORF 139.  

3.5 Plasmid construction and sequencing. The PCR amplification product was purified using a GEL 
Band Purification kit (AmershamPharmaciaBiotech) and ligated to pMOS-Blue T-vector 
(AmershamPharmaciaBiotech). The ligation was transformed into electrocompetent E. coli DH5α by 
electroporation in 0.2 mm cuvettes using a Gene Pulser Machine (BioRad) (12.5 kV, 25 µF, 1000 ω). The 
transformation was plated onto LB medium supplemented with 40 µL of 20 µg/mL X-gal solution and 4 µL 
of isopropylthio-β-D-galactoside from a 200 µg/mL IPTG solution per plate and allowed to grow overnight 
at 37 ºC. White colonies – presumably carrying the recombinant pac1 gene inserted in pMOS-Blue T-vector, 
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named pRSPac1 – were selected and plasmid DNA extracted for analysis of the cloned fragment by 
restriction enzymes. Sequencing of the cloned fragment was performed using an ABI 3700 sequencer 
(Applied Biosystems) 140 and this showed a product of 1.111 Kb.  

3.6 Purification of recombinant Pac1. A single colony of E. coli DH5α with pRSPac1 was grown 
overnight at 30 ºC in 5 mL of LB medium supplemented with carbencillin at 100 µg/mL. 250 µL of culture 
was then inoculated to 250 mL of the same medium supplemented with carbenicillin (100µg/mL) and grown 
under the same culture conditions until OD600 = 0.8; at this point 50 µL of 200 µg/mL IPTG solution was 
added to the culture. Three hours after induction, cells were harvested by centrifugation and washed with 15 
mL of 50 mM tris-HCl (pH 8), 100 mM NaCl and 1 mM EDTA. Cells were collected by centrifugation and 
stored at –70 ºC overnight. Around 3 g of frozen cells were resuspended in 15 mL of lysis buffer (1% NP40, 
0.5% sodium deoxycholate, 0.1 M NaCl, 30 mM Tris-HCl (pH 8), 1mM EDTA); 5 mM MgCl2 and DNase1 
(10 µg/mL) were added. The cell suspension was incubated on ice for 10 minutes. Inclusion bodies were 
collected by washing four times with lysis buffer and twice with 50 mM Tris-HCl 5 mM (pH 8), 1 mM DTT. 
Finally, the sample was dissolved in 5 mL of loading buffer and boiled on a water bath for 10 minutes. The 
total volume of extract was divided into five preparative PAGE electrophoresis samples containing 1 mL of 
protein extract, which were run in 12% gel. The component corresponding to 45.5 kDa recombinant Pac1 
protein was visualized by staining with an aqueous solution of 0.05% Coomassie brilliant blue R250. In each 
case the recombinant protein was excised from polyacrylamide gel, recovered by electroelution, combined 
and concentrated using with a Centricon-10 (Amicon) to 0.5 mL and diluted to 1.5 mL with storage buffer to 
a final composition of 500 mM NaCl, 20 mM sodium phosphate (ph 7.4), 67 mM imidazole, 1 mM DTT, 1 
mM EDTA and 30% glycerol. The recPac1 preparation was stored at –20 ºC 29, 30, 139. 

3.7 Synthesis and preparation of complementary RNA strands. The enzymatic assay of recombinant 
Pac1 was carried out according to the optimized conditions described by Rotondo and Frendewey 29. In a 
previous experiment (data not shown) we amplified by PCR a fragment corresponding to the fourth intron of 
Schizosaccharomyces pombe β-tubuline from its total DNA and inserted the amplified fragment into 
pBluescript II KS (–) for further in vitro transcription purposes. The integrity of the amplified sequence and 
transcriptional fusion was tested by sequencing. We reproduced exactly the described assay to compare the 
activity of our recombinant enzyme with the results from other reports. This construction was used as a 
template for the PCR of fragments corresponding to transcriptional-fusion suitable for the synthesis of both 
complementary strands of dsRNA substrate for an in vitro transcription reaction. For this purpose the 
following primers were synthesized: 

a) 5'- gctcggaattaaccctcactaag↓ggaacGTAGGTTTTTTTGCTTTC-3' (T3 promoter in lower case, 5' end 
of the Schizosaccharomyces pombe β-tubuline fourth intron in upper case). 

b) 5'-ggtacctaatacgactcactatag↓ggagaCTACAGTCGTCAGTAC-3' (T7 promoter in lower case, 
complement of the 3' end of the Schizosaccharomyces pombe β-tubuline fourth intron in upper case).  

The arrows indicate the transcription initiation site. The PCR products were purified and 50 ng of each 
was used to synthesize both complementary strands of the dsRNA Pac1 substrate. The transcription reactions 
were prepared in a final volume of 20 µL containing 40 mM Tris-HCl (pH 7.9), 6 mM MgCl2, 2 mM 
spermedine,  10 mM DTT, 0.5 mM of each ribonucleoside (AmershamPharmaciaBiotech), 50 µCi [α32 P] 
UTP (800 Ci/mmol), 20 U RNAsin (Promega) and 20 U T3 or T7 RNA Polymerase (Amersham Pharmacia 
Biotech). In the case of the transcription reaction driven by the T3 promoter, the addition of 50 mM NaCl to 
the reaction mixture was required. In all cases the reactions were prepared on ice were then incubated at 37 
ºC during 10 minutes. The resulting transcripts were treated with DNAse I (Promega), phenol extraction and 
precipitation with 2.5 V/V of absolute ethanol was carried out and the samples were stored overnight at –70 
ºC. The complementary RNA strands were collected by centrifugation at 16 000 g during 10 minutes at 4 ºC. 
Finally, the pellets were washed with 70% ethanol, dried and re-suspended in diethyl pyrocarbonate treated 
with distilled water and stored at –70 ºC. 

3.8 Preparation of dsRNA substrate for Pac1 enzymatic assay. Equimolar quantities of both 
complementary strands were mixed in diethyl pyrocarbonate and treated distilled water to give a final 
volume of 50 µL. The mixture was heated during 10 minutes at 100 ºC in a water bath. The whole bath was 
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then firmly closed and placed into thermal box overnight to allow annealing of both complementary strands 
into the dsRNA substrate. The unpaired ends and RNA strands were removed by RNase A (Promega) 
treatment. The dsRNA substrate was purified (PAGE-TBE 15% gel) and stored in diethyl pyrocarbonate 
(DEPC) treated distilled water at –70 ºC. The substrate for the Pac1 assay consisted of 101 bp dsRNA, 
identical to the substrate used by Rotondo and Frendewey 29.     

3.9 Enzymatic assay of recombinant Pac1. The Pac1 assay was carried out using the following 
conditions: 30 mM Tris-HCl (pH7.6), 1 mM DTT, 5 mM of MgCl2, 10 nM of dsRNA substrate and different 
quantities (0, 1, 10, 100 nM) of purified recombinant Pac1 enzyme. Enzymatic reactions were completed on 
ice and started by the addition of 0.1V of 50 mM MgCl2, incubated at 30 ºC for 10 minutes and stopped by 
the addition of 500 µL of 5% ice-cooled TCA followed by 15 minutes on ice. The aliquots were centrifuged 
at 16 000 g during 5 minutes in a Spin-X filter unit (Costar). The soluble fractions (filtrate) were quantified 
by liquid scintillation counting. The counting data represent the amount of acid-precipitable polynucleotide 
phosphorus (dsRNA) substrate transformed into acid soluble cleavage products by Pac1 enzyme. The 
procedure was repeated three times with three repetitions per experiment 29, 30, 139.  

 
4. Results and discussion  
 
4.1 MMM-QSAR model to predict type III RNAses without alignment.  
 
Many different parameters can be used to encode protein sequence information and further assign or 

predict the function or physical properties of proteins and their mutants 141, 142. The present approach involves 
the calculation of different sequence parameters based on MMs, which can be applied to different kinds of 
molecular graphs 131 including DNA, RNA and proteins 93, 143. MMs have been applied successfully to 
Genomics and Proteomics and represent an important tool for analyzing biological sequence data. In 
particular, MMs have been used for protein folding recognition 144 and the prediction of protein signal 
sequences 145, 146 . MMs have also been applied to predict alpha turns 147, beta turns 148, as well as other tight 
turns and their types 149. Particularly, MMs have been further used to predict the specificity of GalNAc-
transferase 150 and cleavage sites in proteins by proteases 151-154, greatly stimulating the development for drug 
design against AIDS and SARS 155-163. In this work we calculated MMMs (HPπk) of the stochastic matrix that 
describe the distribution of the amino acids of the protein sequence in the 2D-HP graph. This calculation was 
carried out for two groups of protein sequences, one made up of RNase III-like enzymes and the other 
formed by heterogeneous proteins. This last group contains 133 members and these were selected as follows:  

Original data were submitted to k-Means cluster analysis as described previously. The k-MCA divided the 
data into four clusters containing 439, 684, 592 and 469 members, respectively. Selection was based on the 
distance from each member with respect to the cluster centre (Euclidean distance). We selected the closer 
cases to the centre in order to ensure the inclusion of representative members of each cluster in the control 
group. Depending on the cluster size, a proportional number of proteins were set; 27 cases were taken from 
the first cluster, 42 from the second, 36 from the third and 28 from the fourth to give a total of 133 members 
in the control group. We always bore in mind the principle of discriminant analysis in terms of balancing the 
size of the control group with respect to the RNase III group. 

A simple MMM-QSAR was then developed to classify a novel sequence as RNase III or not. The best 
equation found for this purpose was:  

( )322.236.3346.35 score-RNaseIII 20 −×−×= ππ HPHP  

 The statistical parameters for the above equation were Wilk’s statistic (λ = 0.18), Mahalanobis’s distance 
(D2 = 16.36) and error level (p-level < 0.001) 164. This discriminant function misclassified only four cases out 
of 214 proteins used in both the training and validation series, reaching a high level of accuracy of 98.13%. 
More specifically, the model classified correctly 77/81 (95.06%) of RNase III-like enzymes and 100% of the 
control group. The respective classification matrices for training and cross-validation are depicted in Table 1. 
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Table 1. Classification results derived from the model for training and validation series 

MMM Training MMM Validation 
Total% 97.35 RNases Control RNases Control 100 Total% 
RNases 93.44 57 4 20 0 100 RNases 
Control 100 0 90 0 43 100 Control 

MMM All sequences HMM classic 
Total% 98.1 RNases Control RNases  Control 97.50 Total% 
RNases 95.1 77 4 80 1 98.75 RNases 
Control 100 0 133 5 128 96.24 Control 

 
A validation procedure was subsequently performed in order to assess the model predictability. This 

validation was carried out with an external series of 20 RNase III-like proteins and a further 43 diverse 
proteins (see Table 1). The present model showed an average predictability of 100% for each group, which is 
remarkable in comparison to results obtained by other researchers on using the LDA method in QSAR 
studies 165-168. These results are consistent with those obtained in our previous report, in which we used 2D 
coupling numbers as sequence descriptors for function annotation of plant metabolism enzymes 93. In 
addition, we carried out a classification analysis with all of the proteins included. These results provide 
further evidence of the robustness of the results obtained. The Receiver Operating Characteristic (ROC) 
curve was also constructed for the training and validation series. Notably, the curve presented a pronounced 
curvature (convexity) with respect to the y = x line for both series (see Figure 4). This result confirms that 
the present model is a significant classifier, having areas of 0.99 (training) and 0.97 (validation) – i.e. 
markedly higher than 0.5, which is the value for a random classifier 169.  

 

 
 
 

Figure 4. Receiver Operating Characteristic curve (ROC-curve) for training (dark line), validation (dot 
line) and random classifier (tight line) with areas under curve of 0.99, 0.97, and 0.5, respectively.  
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4.2 Isolation, prediction and assay of a novel Pac1 from Schizosaccharomyces pombe strain 428-4-1 
 
4.2.1 Isolation.  
 
In this work we isolated, cloned and expressed a new Pac1 DNA sequence from Schizosaccharomyces 

pombe strain 428-4-1, its nucleotide and amino acid sequence was recorded on the GenBank database with 
accession number DQ647826. The theoretical prediction of its translated ORF as an RNase III-like enzyme 
was performed by the present alignment-independent approach instead of traditional alignment methods. The 
theoretical prediction of rPac1 as a double-stranded RNase was confirmed experimentally by in vitro assays.  

 
4.2.2 Prediction. 
 
 Our Pac1 protein sequence was analyzed using the MMM-QSAR methodology with the aim of 

recognizing the rPac1 gene product as a eukaryotic RNase III homologue. The sequence was represented in a 
Cartesian 2D system and calculated including the whole data set. This particular case was included in the 
validation subset in order to make a prediction. The MMM-QSAR model even very simple (two variables) 
allowed the correctly classification of the rPac1 product as an RNase III-like enzyme with the maximum 
probability (p = 1). In order to make a graphical comparison between our methodology and alignment 
methods like BLASTp 170-173, several representative RNase III protein sequences from prokaryotes and 
eukaryotes were selected together with rPac1 for representation in a 2D-mapping system (see Figure 5).  

 

 
 

Figure 5. 2D-HP map superposition of RNases from prokaryotes (dark grey), eukaryotes (in light grey) 
and rPac1 DQ647826 from Schizosaccharomyces pombe strain 428-4-1 (in black). 
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The 2D-HP map protein representation revealed a significant separation for the groups consisting of 

dsRNases from prokaryotes (in dark grey) and eukaryotes (in light grey). The rPac1 protein (in black) is 
placed between the two groups, acting as a sort of link between the RNase III families. This representation 
possibly supports evolutionary relationships between double-stranded RNase protein sequences. Since the 
Cartesian 2D protein representation is mainly based on amino acid composition, we can highlight a major 
region from rPac1 matching eukaryote sequences (in light grey) and another small region that lies within the 
prokaryote region (in dark grey). There is also a non-matching region specific for rPac1 in 
Schizosaccharomyces pombe that does not exist in other eukaryotes. However, matching regions in the graph 
made a significant contribution to calculation of the spectral moments, thus allowing successful recognition 
of rPac1 as RNase III.  

A BLASTp analysis was carried out on the translated rPac1 DNA sequence (see Figure 6). This method 
recognized successfully our query sequence as a Pac1 ribonuclease, reaching up to 98% of amino acid 
identity with others already recorded from Schizosaccharomyces pombe strains. Although this analysis 
showed lower scores (close to 80%) in comparison to other typical dsRNases, the approach still enabled 
protein query recognition as RNase III. With the aim of comparing different methods, it is possible to set an 
equivalence for the score value (80%) from BLASTp with our predicted probability, p = 1, for rPac1 to act as 
an RNase III-like enzyme. BLASTp also revealed low amino acid identity (< 40%) toward the C-terminal 
portion despite this representing the highest conserved region in the four existing RNase III subclasses. On 
the other hand, as mentioned previously, each sequence included in the study was submitted to InterProt. All 
cases (100%) from the RNAse III group matched significantly with RNase III domains (IPR000999), 
allowing the total recognition as dsRNases (see Tables ISM). In the case of the control group, six cases did 
not have InterProt identification and three of them did not have any hits reported (95, 50% of predictability) 
(see Table IISM). 

 

 
Figure 6. BLASTp analysis for rPac1 protein sequence DQ647826. Note that the scale of scoring is 

progressive in darkness. Sequence names are not depicted.  
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We also performed an alignment between the previously selected sequences in the figure 5 and our rPac1 

product using the Clustal W program, version 1.81 (see Figure 7 and Figure 8). Alignment results coincide 
with those obtained in previous studies reported by other authors. The rPac1 showed low amino acid identity 
percentages in comparison to dsRNase sequences from other eukaryote organisms, even for those belonging 
to yeast-related species. Short and less frequent regions match along the protein sequences, especially toward 
the N-terminal region (see Figure 8). The comparison with prokaryote sequences showed a matching region 
toward the protein’s C-terminal part, from the 170 up to 260 amino acid position. This region corresponds 
with the RNase III C-terminal domain (RIBOc), which is conserved in eukaryotic, bacterial and archeal 
RNase III and is associated with the catalytic activity. There is a significant N-terminal region in the Pac1 
product that does not appear in the RNase III prokaryote family – a finding consistent with other reports (see 
Figure 7) 29. 

 
 

 
Figure 7. Clustal X sequence alignment involving RNase III like enzymes, each sequence is represented 

by its accession to GenBank Database Protein. Sequences used in the alignment were represented previously 
in Cartesian 2D system (Fig. 5).  We use sequences from bacteria and rPac1 from S. pombe. [ZP_01171567] 
Bacillus sp. NRRL B 14911, [AAT60616] Bacillus thuringiensis, [BAD75477] Geobacillus kaustophilus 
HTA426, [ZP_01275092] Lactobacillus reuteri, [Q82ZG1] Enterococcus faecalis, [NP_687738] 
Streptococcus agalactiae 2603VR, [AAA79829] E.coli, [YP_040620] Staphylococcus aureus MRSA252, 
[DQ647826] S.pombe strain 428-4-1 
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Figure 8. Clustal X sequence alignment involving RNase III like enzymes, each sequence is represented 

by its accession to GenBank Database Protein. Sequences used in the alignment were represented previously 
in Cartesian 2D system (Figure 5).  We use sequences from some representative eukaryotes and rPac1 from 
S. pombe. [XP_717277] Candida albicans SC5314, [XP_457193] Debaryomyces hansenii CBS767, 
[NP_013966] Saccharomyces cerevisiae, [XP_449570] Candida glabrata CBS138, [XP_456185] 
Kluyveromyces lactis, [DQ647826] S.pombe strain 428-4-1, [EAL91634] Aspergillus fumigatus Af293, 
[XP_790161] Strongylocentrotus purpuratus. 

 
The results found in this study confirm that our model does not replace classical method for protein 

function annotation like BLAST or InterProt service, but becomes an interesting alternative tool – especially 
due to its alignment-independence and simplicity. It is also important to highlight that our methodology can 
be considered as a good classifier, despite its simplicity, as it gives rise to a linear equation with two 
variables at most. Consequently, it is a useful method to perform a quick virtual screening of a representative 
protein database since the protein query submission to classical sequence classifiers is generally performed 
on a one by one basis. Thus, once the whole database has been screened and proteins having the desired 
function are recognized, it would be advisable to assess results obtained using our approach by other 
methodologies. The search for approaches that complement or improve on classical alignment tools like 
BLAST with information from gene ontology, RNA secondary structure prediction, partial ordering or other 
sources constitutes a goal of major importance 174-178. 

In order to compare the MMM-QSAR approach reported here with other methodologies based on MM, 
training and negative (non-RNAses sequences) sets were scored with a classic HMMs. Classification driven 
by an HMM built on the original training set resulted in an accuracy of 98.75% for the positives sequences 
(training set) and 96.24% for the negative sequences (see Table 1). Our query sequence DQ647826 was also 
successfully predicted with the maximum score by the HMM.  

 
4.2.3 Experimental evidence for RNase III activity. Recombinant Pac1 protein from 

Schizosaccharomyces pombe strain 428-4-1 was purified in order to measure its double-stranded RNase 
activity in vitro. The corresponding product size (45.5 kDa) coincided with the reported size for the native 
protein (see Figure 9). Double-stranded activity was measured in vitro by following the protocol described 
above. The unit definition for all RNase III types is the amount of enzyme able to solubilize 1 nmol of acid-
precipitable radioactivity per hour. 17. Pac1 activity showed values comparable to other results (5 × 105 
U/mg) obtained for a recombinant Pac1 product from Schizosaccharomyces pombe by Rotondo and 
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Frendewey 29. Results derived from the enzymatic activity assay are shown in Table 2 for each experiment; 
the mean value was 6.96 × 105 U/mg.  

 
 

Figure 9.  Electrophoresis of rPac1 protein, 45 kDa rPac1 was purified and loaded in 12.5% PAGE-SDS 
and stained with Coomassie brilliant. (a) Band corresponding to rPac1 purified (b) Molecular weigth 
marker; 66.2 kDa, 45.7 kDa, 31 kDa, 21.5 kDa, 14.4 kDa (Unstained SDS-PAGE Standards Broad Range, 
BioRad) 

 
 

Table 2. Enzymatic assay of double-stranded RNase recombinant Pac1 DQ647826 extracted from 
Schizosaccharomyces pombe strain 428-4-1 

 
Conc. rPac 1 1nM  10 nM 100 nM 

EUVa 
6.2 × 105 
6.0 × 105 
6.6 × 105 

7.4 × 105 

6.8 × 105 

6.9 × 105 

7.2 × 105 

7.3 × 105 

7.9 × 105 

Mean 6.4 × 105 7.0 × 105 7.5 × 105 
a Enzymatic unit value for rPac 1 (U/mg)  

 
 
 
The kinetic enzymatic reaction of rPac1 by monitoring dsRNA integrity (lanes 2–5) is illustrated in 

Figure 10. This particular results for the DQ647826 sequence were not carry out to validate the MMM-
QSAR model but to shown how to use it for predicting RNase III-like protein function annotation. We recall 
that the validation of the MMM-QSAR model was assessed with the external prediction series as 
recommended for any QSAR (see previous sections).179 
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Figure 10. Autoradiography of rPac1 enzymatic assay. To visualize the cleavage activity of dsRNA 

substrate generated by T3/T7 "in vitro" transcription, aliquots of enzymatic assay were taken at 2, 5 and 10 
minutes, loaded in 12.5% PAGE/7M Urea followed by autoradiography. Lane 1 is pBR322 digested by 
Msp1, Lane 2 is the intact dsRNA substrate, Lane 3  to 5 are the results of rPac1 enzymatic activity at 2, 5 
and 10 minutes of reaction at 30ºC. Lane 6 and 7 are the T3 and T7 ssRNA obtained by "in vitro" 
transcription too which are not degradated by RNAse activity of Pac1. 

 
5. Conclusions  
The work described here introduces a new approach to predict RNase type III function from protein 

sequences irrespective of sequence alignment. The methodology uses the MMMs associated with a 2D 
sequence representation as the input for an LDA classifier. This MMM-QSAR classifier successfully 
discriminates between RNase-like sequences and a control group. The Pac1 gene product was chosen as a 
representative example of a sequence with low amino acid identity compared to other enzymes with similar 
activity. The present methodology achieves high classification scores similar than bioinformatics tools based 
on sequence alignment (BLASTp) and comparable results to other predicting protein function annotation 
methods like InterProt and HMMs. The predictions made by the present model coincide with outcomes from 
experimental isolation, expression, and enzymatic activity measurement of a novel pac1+ gene sequence 
DQ647826 isolated from a new isolate Schizosaccharomyces pombe strain 428-4-1. The work opens up new 
possibilities for the use of the experience accumulated in small molecules QSAR in the field kind of 
alignment-independent sequence function annotation.  

 
Supplementary Material 
Detailed information on the proteins used in the study is supplied in the online Supplementary material 

and this includes organism, accession number, protein definition, values of the stochastic spectral moments 
and scores (Tables ISM and IISM). This information is available free of charge via the Internet at 
http://pubs.acs.org. 
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