

1st International Electronic Conference on Horticulturae April 2022 | ONLINE

EVALUATING THE EFFECT OF BIOCHAR ON NUTRIENT LEACHING AND RICE GROWTH IN DISTURBED AND **UNDISTURBED SOIL-COLUMNS**

Chenda Lai^{1,2}, Nachhy Ly³, Veasna Touch⁴, Sarith Hin⁴, Pascal Podwojewski⁵, Pinnara Ket^{1,3}, Pascal Jouquet⁵, Aurore Degré², Vannak Ann^{1,3}

¹WAE Research Unit, Institute of Technology of Cambodia, Phnom Penh, Cambodia

² Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium

³ Faculty of Hydrology and Water Resource Engineering, Institute of Technology of Cambodia, Phnom Penh, Cambodia

⁴ Soil and Water Science Division, Cambodian Agricultural Research and Development Institute, Phnom Penh, Cambodia

⁵ Sorbonne Université, UPEC, CNRS, IRD, INRAE, Institut d'écologie et des sciences de l'environnement, IEES, FEST, Paris, France

*Corresponding author: <u>chenda.lai@gsc.itc.edu.kh</u>

INDRODUCTION

Soil fertilization stands on the top of rice crop production issue. Nutrient leaching in paddy field, leading to lower plant uptake and low yield, poses a challenge for Cambodian farmers and is becoming a key concern for the environment. The carbonized organic waste called **biochar** is known as potentially valuable input to enhance soil properties in many regions is introduced.

This study is to evaluate the effect of biochar on the leaching of N and P, and rice growth under disturbed and undisturbed conditions of the plowed layers using soil column-based experiment.

MATERIALS AND METHODS

Soil column-based experiment design disturbed (a) and undisturbed (b) conditions

RESULTS AND DISCUSSION

CNTL, Control; **CHEM,** Chemical Fertilizer in rate of 60:30:30 of NPK; CHEM+BIO2, Chemical Fertilizer in rate of 60:30:30 + Biochar 2t/ha; CHEM+BIO4, Chemical Fertilizer in rate of 60:30:30 + Biochar 4t/ha.

Leachate (NO_{3⁻}, NH₄⁺, PO₄³⁻) was collected at 7-days interval. •••

Rice growth (biomass of plant, biomass of root, weight of grain per ••• panicle, total grain yield) was collected at the mature stage.

CONCLUSION

No significant differences between "disturbed" and "undisturbed" columns, except the biomass of root. • Lower leaching of N (NH₄-N and NO₃-N) in presence of biochar but no effect on PO₄³⁻. Rice yield and biomass were increased in presence of biochar.

The work was funded by Cambodia Higher Education Improvement Project (Credit No. 6221-KH)