The 3rd International Online-Conference on Nanomaterials

25 APRIL - 10 MAY 2022 ONLINE

IOCN

2022

MDPI

Pt supported on CeTi-modified hexagonal mesoporous silica as photocatalysts for degradation of phenols in water

M. Ciobanu¹, G. Petcu¹, A. Baran¹, E. M. Anghel¹, N. Apostol², M. Mureseanu³, V. Parvulescu¹

¹ – Ilie Murgulescu Institute of Physical Chemistry of Romanian Academy, Splaiul Independentei 202, Bucharest,
² -National Institute of Materials Physics, Atomiştilor 405A, 077125 Măgurele – Ilfov, Romania
³ –University of Craiova, Faculty of Science, Department of Chemistry, Calea Bucuresti 107i, Craiova, Romania

Outline of the talk

- Introduction
- Synthesis of the materials
- Characterisation of the materials
- Photocatalytic activity in the degradation of organic compounds from water

Introduction

Phenolic compounds

- Dispersion of TiO₂ on a support with high surface area ions can increase photocatalytic performances due to extended light absorption range and a better charge separation.
- Cerium is an interesting candidate to TiO_2 doping due to the same valence in the stable oxide and having four valence electrons both.
- The thermal and mechanical stability of Ce/TiO₂ photocatalysts was not good enough for practical applications.
- In order to address these problems, one approach is to disperse TiO_2 on the high surface area supports such as mesoporous silica and dopped it with different metals (e.g. Pt, Ce).
- Photocatalytic degradation of phenol and substituted phenols in wastewater has been widely investigated, the most used process being based on TiO_2/UV .

•The obtained solids were further used as supports for impregnation, by incipient wetness technique, with an aqueous solution of platinum (H_2PtCl_6) and cerium $Ce(NO_3)_3$ in order to prepare catalysts with 0.25, 0.5, and 1% Pt, respectively, 1% CeO_2 .

Morphology and structure of the catalysts

Structure of the catalyst components

M. Ciobanu, G. Petcu, E.M. Anghel, F. Papa, N.G.Apostol, D.C. Culita, I. Atkinson, S. Todorova, M. Shopska, A. Naydenov, R. Velinova, V. Parvulescu, Applied Catalysis A: General, 2021, 619, 118123

Raman shift (cm⁻¹)

Surface composition

Optical properties

the strong peak at 230 nm indicates the proof the framework titanium species

the broad absorption band for samples with CeO₂ can be attributed to $O^{2-} \rightarrow Ce^{4+}$ charge transfer (277 nm) and to inter-band transitions (347 nm)

significant effect on adsorption can be observed for samples with 1% Pt which can be attributed to the remarkable effect of Pt under its strong interaction with titanium and cerium oxides dispersed on the support

we have a high interface and stronger interaction between ceria and titania

Band gap values	SB	TSB	CTSB	PTSB	CPTSB	PCTSB
	3.95	3.87	2.71	3.22	2.46	2.31

HO radicals from the surface by fluorescence technique

Photocatalytic degradation of phenols from water

3rd International Online-Conference on Nanomaterials Nanotechnology for Catalysis, Electrochemistry, Energy, and Environment (Session G) 25 April – 10 May 2022

Proposed mechanism

Conclusions

•New catalysts were obtained with activity in photocatalytic oxidation of organic compounds

•XRD, N_2 adsorption-desorption, SEM and TEM results confirm preservation of mesoporous ordered structure, specially after the introduction of titanium and ceria

• The co-solvent changed the morphology and some characteristics of SBA-15 porous structure

•The best results in photocalalytic degradation of phenol were obtained for CTSB and PTSB samples

•These catalytic tests shown a competition between morphology, dispersion of Ti and Ce on the materials surface and a strong interaction between Ce and Ti

•Dispersion of TiO_2 on mesoporous silica and its doping with Ce or Pt is a good solution to obtain very active photocatalysts for degradation of phenols from water.

Thank you for your attention!

Nanomaterials (ISSN 2079-4991) is an international peer-reviewed open access journal published semi-monthly online by MDPI.

Editor-in-Chief Prof. Dr. Shirley Chiang

Journal's Aims and Scope:

nanomaterials methodologies applications

JCR Category Rank: 35/160 (Q1) in 'Physics, Applied'; 51/107 (Q2) in 'Nanoscience & Nanotechnology'; 103/335 (Q2) in 'Materials Science, Multidisciplinary'; 55/179 (Q2) in 'Chemistry, Multidisciplinary'.

Author Benefits

Open access: unlimited and free access for readers;

Rapid publication: an average of 33 days from submission to publication;

Coverage by **SCIE** (Clarivate Analytics, formerly Thomson Reuters), INSPEC (IET), **Scopus** (Elsevier), **Pubmed** (NLM);

Thorough peer review

40000

25000

20000

15000

10000

5000

OPEN (ACCESS

0

Open Access

https://iocn2022.sciforum.net/

Journal website: mdpi.com/journal/nanomaterials

Author

Benefits

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

High Visibility

Rapid Publications

No Copyright Constraints