

A DELVE INTO THE NOVEL FIELD OF ESSENTIAL OIL-BASED SILVER NANOPARTICLES AND ITS ANTI-INFLAMMATORY POTENTIAL

Shreyashi Pal, Shivesh Jha

Department of Pharmaceutical Science and Technology, BIT Mesra, Ranchi, JH, India.

Email ID: shreyashipal1997@gmail.com

Abstract: The overall interest in natural products is ever-increasing which clearly explains the involvement of various essential oils in different aspects of the day-to-day lives of common people. These pharmacologically relevant agents are categorised as secondary metabolites of plants extracted or distilled from different parts of plants, and that show pharmacological activities like anti-inflammatory, antioxidant, antimicrobial, larvicidal, etc.

The synthesis of metal nanoparticles has been developed by including different polymers, capping agents, and metal sources in the reaction. With the advancement of research, biological capping agents are being used for synthesizing metal nanoparticles like plant extracts, algae, fungi, etc. Essential oil is a newly added member of this list of capping agents. In the case of other metallic nanoparticles produced from biological capping agents, it was seen that the therapeutic activity of the plant material is also present within the produced nanoparticle. Similarly, for essential oil-derived nanoparticles, the therapeutic efficacy of the oil will be present within the nanoparticle. So, essential oils derived from plants like Eucalyptus, Clove, Lavender, etc. can be used to create nanoparticles that can act as anti-inflammatory agents. With work initiating on cumin oil and other oils like turmeric oil, it can be understood that the field of essential oil-derived nanoparticles is gaining much traction. The poster will present an accumulation of knowledge and show the available literature related to the anti-inflammatory potential of essential oil-mediated silver nanoparticle.

Keywords: Anti-inflammatory activity; Capping agents; Essential oils; Green synthesis; Metal nanoparticles; Silver nanoparticles.

Anti-inflammatory Potential of Essential Oils

Name of the Plant	Part Used	Main Compo nent	Experiment al Model	Mechanism of Action	Referen ces
Thymus carnosu s, Thymus campho ratus	Flowerin g aerial parts	T. carnosus [Borneo 1 (29%), Camphe ne (19.5%)] T. camphor atus [Borneo 1 (20%), 1, 8- cineole (29%)]	RAW 264.7 and HepG2 cell lines	Inhibition of nitric oxide production; T. camphoratus inhibits COX-2 & iNOS	Zuzarte et al., 2018
Citrus l imon, Ci trus aur antifolia , Citrus li monia	Fruit peel	Limone ne, β- pinene, γ- tripinen e	In vivo anti- inflammatory tests: Hot plate test, Formalin test; Subcutaneou s air pouch (SAP) model	Reduce increased levels of TNF-α, IL- 1β, IFN- γ	Amorin et al., 2016
Citratus aurantiu m L.	Fresh blossoms	Linalool	Inflammator y paw edema test, cotton plate-induced granuloma	Inhibition of expression of prostaglandin synthesis through the COX pathway, inhibits formation or release of nitric oxide	Khodana khsh et al., 2015

Nanoparticles

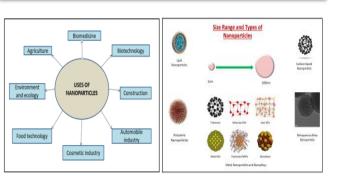



Fig: Application of Nanoparticle

Fig: Types of Nanoparticles

Anti-inflammatory Potential of Silver Nanoparticles

Biologic al Materia I Used	Characteristics of the nanoparticles	Inflammation Model used	Mechanism of Action	Refere nce
Leaves of Salvia coccine a	Size: 24nm; Shape: Spherical	THP-1 cell line	Inhibition of oxidative stress transcription factor NF-κB	Gobina th <i>et</i> <i>al.</i> , 2021
Petals of Rosa indica	Size: 23.52- 60.83nm; Shape: Spherical	Rat peritoneal macrophages	Inhibition of the production of nitric oxide and superoxide	Manika ndan <i>et</i> <i>al.</i> , 2015
Seeds of Acranyt hes aspera Linn.	Size: 20-35nm; Shape: Cuboidal, rectangular	Carrageenan- induced in albino rat	Inhibition of paw edema	Vijayar aj <i>et</i> <i>al.</i> , 2016
_	00			

Anti-inflammatory Activity of Essential oil-mediated Silver Nanoparticles

Plant Name	Characterization	Experimental Model	References			
Ginger (Zingiber	UV-Vis	In vitro assay; Inhibition of	Aafreen et			
officinale)	spectroscopy	albumin denaturation assay	al., 2019			
a •	UV-Vis	In vitro assay; Inhibition of	Jain et al.,			
Cumin	spectroscopy	albumin denaturation assay	2019			

Conclusion

- Essential oils can be a great alternative medicine for the treatment of inflammation with less number of side effects.
- Adding essential oil as a capping agent can act as synergistic action and show better anti-inflammatory agent than the essential oil alone.
- There is lack of proper animal study which gives the scope for research in future.