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Abstract: CH3NH3PbI3 perovskite solar cells using silicon phthalocyanine (SiPc) with decaphenyl-
cyclopentasilane (DPPS) were fabricated and characterized. Effects of hole transport capacity of SiPc 
on the photovoltaic properties were investigated by changing the concentration of the SiPc. Contin-
uous addition of SiPc and DPPS on the perovskite layer improved the short circuit current density 
related to the conversion efficiency. The conversion efficiencies were stable for 28 days. The photo-
voltaic performance depended on the (100) crystal orientation and the crystallite sizes. 
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1. Introduction 
To substitute silicon solar cells, perovskite solar cells are expected as the next gener-

ation of solar cells, and they are low cost and have easy manufacturing process [1–8]. The 
perovskite solar cells were constructed with photoactive layer with hole transport layers 
[9,10]. The photovoltaic characteristics of the perovskite crystals with tuning compositions 
of chemical elements have been performed to improve conversion efficiencies and micro-
structures. However, its low stability of the perovskite layer, resulting in reduced power 
generation characteristics, is a major challenge. 

Although 2,2′,7,7′-tetrakis(N,N-di-p-methoxyphenylamine)-9,9′-spirobifluorene 
(spiro-OMeTAD) is used for the hole transport layer of perovskite solar cells, it is expen-
sive due to its complex synthesis route of multi-step purification process, and it shows 
low stability against annealing. Alternative hole transport materials using silane deriva-
tives such as decaphenylcyclopentasilane (DPPS) instead of conventional spiro-OMeTAD 
have been developed for improving stability of the conversion efficiencies while sup-
pressing the decomposition [9–14]. It has also been reported that the self-assembled su-
pramolecules of monoamine porphyrins (MPs, M = Co, Ni, Cu, Zn, and H) have great 
potential to play a role of improving hole extraction and transport at perovskite grain 
boundaries, especially for NiP system [15]. In addition, metal phthalocyanines as organic 
semiconductive materials have advantages to apply the electronic devices such as organic 
solar cells and perovskite solar cells [16–21]. Addition of the metal phthalocyanines into 
the perovskite layer will provide promotion of photo-induced carrier generation, charge 
diffusion related to mobility with suppressing carrier recombination and improving sur-
face morphology of the perovskite layer. Furthermore, basic researches and developments 
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of the perovskite solar cells using metal phthalocyanines were reported to improve the 
photovoltaic properties [22–29]. 

The purpose of this study is to fabricate and characterize the perovskite solar cells 
using soluble tetrakis(tert-butyl)[bis(trihexylsiloxy) sillicon phthalocyanine (SiPc) with 
decaphenylcyclopentasilane (DPPS) as hole-transporting materials. The effect of SiPc on 
the photovoltaic properties and formation of perovskite compounds in solar cells were 
investigated using current density—voltage (J-V) curves under light irradiation, external 
quantum efficiencies (EQE), X-ray diffraction (XRD) patterns, and optical microscopy im-
ages. First-principles molecular orbital calculations were also used for electronic and 
structural calculations. 

2. Materials and Methods 
CH3NH3PbI3 (MAPbI3) perovskite solar cells using DPPS and SiPc were fabricated 

using the following process, as shown in Figure 1. F-doped tin oxide (FTO) substrates 
were cleaned using an ultrasonic bath with acetone and methanol, and dried under nitro-
gen gas. The 0.15 and 0.30 M TiOx precursor solution was prepared from titanium diiso-
propoxide bis(acetylacetonate) (0.055 and 0.11 mL, Sigma-Aldrich, Tokyo, Japan) with 1-
butanol (1 mL, Nacalai Tesque, Kyoto, Japan), and the 0.15 M TiOx precursor solution was 
spin-coated on the FTO substrate at 3000 rpm for 30 s and annealed at 125 °C for 5 min. 
Then, the 0.30 M TiOx precursor solution was spin-coated on the TiOx layer at 3000 rpm 
for 30 s and annealed at 125 °C for 5 min. This process of 0.30 M solution was performed 
two times, and the FTO substrate was sintered at 550 °C for 30 min to form the compact 
TiO2 layer. After that, TiO2 paste was coated on the substrate by spin-coating at 5000 rpm 
for 30 s. For the formation of mesoporous TiO2 layer, the TiO2 paste was prepared with 
TiO2 powder (P-25, Aerosil, Tokyo, Japan) with polyethylene glycol (PEG #20000, Naalai 
Tesque, Kyoto, Japan) in ultrapure water. The solution was mixed with acetylacetone (10 
μL, Fujifilm Wako Pure Chemical Corporation, Osaka, Japan) and triton X-100 (5 μL, 
Sigama Aldrich, Tokyo, Japan) for 30 min. The cells were annealed at 120 °C for 5 min and 
at 550 °C for 30 min to form the mesoporous TiO2 layer [30,31]. 

 
Figure 1. Fabrication process of the perovskite solar cells with SiPc and DPPS. 

For the preparation of the perovskite compounds, a solution of CH3NH3I (MAI, 2.4 
M, Tokyo Chemical Industry, Tokyo, Japan), and PbCl2 (0.8 M, Sigma Aldrich, Tokyo, 
Japan) with a desired mole ratio in N, N-dimethylformanide (0.5 mL, Sigma Aldrich, To-
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kyo, Japan) was mixed at 60 °C. The solution of perovskite compound was then intro-
duced into the mesoporous TiO2 by a spin-coating method using an air blowing method 
[32–34]. 

SiPc (Orient Chemical Industries, Osaka, Japan) and 2,2′,7,7′-tetrakis[N,N-di(meth-
oxyphenyl)amino]-9,9′-spirobifluorene (spiro-OMeTAD, 36.1 mg, Sigma Aldrich, Tokyo, 
Japan) were used for preparation of the hole transport layer. A solution of silicon phthal-
ocyanine mixed in chlorobenzene (0.5 mL, Fujifilm Wako Pure Chemical Corporation, 
Osaka, Japan) was prepared by stirring. The DPPS and SiPc solutions were spin-coated by 
the previously reported method [35,36], and annealed at 190 °C for 5 min. 

Additionally, a solution of spiro-OMeTAD (36.1 mg, Sigma Aldrich, Tokyo, Japan) 
in chlorobenzene (0.5 mL, Fujifilm Wako Pure Chemical Corporation, Osaka, Japan) was 
mixed with a solution of lithium bis(trifluoromethylsulfonyl)imide (Li-TFSI, 260 mg, To-
kyo Chemical Industry, Tokyo, Japan) in acetonitrile (0.5 mL, Sigma Aldrich, Tokyo, Ja-
pan) for 30 min. The former solution with 4-tert-butylpyridine (14.4 μL, Sigma Aldrich, 
Tokyo, Japan) was mixed with the Li-TFSI solution (8.8 μL) for 30 min at 70 °C. All proce-
dures were carried out in ordinary air. Finally, gold (Au) metal contacts were evaporated 
as top electrodes. Layered structures of the present photovoltaic cells were denoted as 
FTO/TiO2/perovskite/SiPc/DPPS/Au. 

The J–V characteristics (Keysight B2901A, Keysight Technologies, Santa Rosa, CA, 
USA) of the photovoltaic cells were measured under illumination at 100 mW cm–2 by using 
an AM 1.5 solar simulator (San-ei Electric XES-301S, Osaka, Japan). The best and average 
conversion efficiencies, and standard deviations of the solar cells with the three electrodes 
prepared in this study were measured in the reverse scan of the J-V curves. The solar cells 
were illuminated through the side of the FTO substrates, and the illuminated area was 
0.080 cm2. Microstructural analysis was conducted by an X-ray diffractometer (Bruker, 
Billerica, MA, USA, D2 PHASER). The surface morphologies of the perovskite layers were 
examined using an optical microscope (Nikon, Tokyo, Japan, Eclipse E600). 

3. Results and Discussion 
Figure 2a is a structure model of tetrakis(tert-butyl)[bis(trihexylsiloxy) sillicon 

phthalocyanine. Figure 2b is a structure model after structural optimization by molecular 
orbital calculation. Energy gaps were also calculated, and their energy levels would con-
tribute the carrier transport [37–39]. SiPc and silicon naphthalocyanine have been used for 
a p-type semiconductor for organic solar cells [40,41]. 

 
Figure 2. (a) Structure of SiPc. (b) Optimized molecular structure of SiPc. 

The J–V characteristics of the photovoltaic cells were measured. In the case of adding 
SiPc, the photovoltaic parameters such as short-circuit current density (JSC), fill factor (FF), 
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series resistance (Rs), shunt resistance (Rsh) and conversion efficiency (η) were obtained to 
be 20.8 mA cm−2, 0.819 V, 0.508, 2.97 Ω cm2, 127 Ω cm2, and 8.66 %. The J–V characteristics 
of the photovoltaic cells were also measured after 28 days, and the conversion efficiency 
was stable, which suggests that SiPc layer is related to the stability of the devices. 

An X-ray diffraction pattern showed (100) orientation of the perovskite crystals in the 
devices, and the JSC values would be related with the crystal orientation. Morphologies of 
the perovskite surface were observed by optical microscopy, and the surface coverage 
would be affected by the concentration of SiPc solution. 

4. Conclusions 
Fabrication and characterization of CH3NH3PbI3 perovskite solar cells using SiPc 

with DPPS were performed. Effects of hole transport of SiPc on the photovoltaic proper-
ties were investigated by using the SiPc. Continuous addition of SiPc and DPPS on the 
perovskite layer improved the short circuit current density related to the conversion effi-
ciency. The stabilities of conversion efficiency were maintained for 28 days. The photovol-
taic performance depended on the (100) crystal orientation and the crystallite sizes. 
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