The 3rd International Online-Conference on Nanomaterials 2022 25 APRIL - 10 MAY 2022 ONLINE

CARBON NANOMATERIALS AS PROMISING CARRIERS OF CYTOSTATIC DRUGS IN CANCER CHEMOTHERAPY: PILOT STUDY

VLADIMIR A. SHIPELIN^{1,2}, IVAN V. GMOSHINSKI¹, NIKOLAY A. RIGER¹, ANTONINA A. SHUMAKOVA¹, ELEONORA N. TRUSHINA¹, OKSANA K. MUSTAFINA¹, SERGEY A. KHOTIMCHENKO^{1,3}

¹Federal Research Centre of Nutrition, Biotechnology and Food Safety, Russia, Moscow

² Academic Department of Innovational Materials and Technologies Chemistry, Plekhanov Russian University of Economics, Russia, Moscow

³ Department of Food Hygiene and Toxicology, I.M. Sechenov First Moscow State Medical University, Russia, Moscow

Correspondence to Vladimir A. Shipelin — MD, PhD — e-mail: v.shipelin@yandex.com

Carbon nanomaterials (CNMs), such as single-walled (SWCNT) and multi-walled (MWCNT) carbon nanotubes, are considered promising agents for the delivery of pharmacological drugs to target organs, including antitumor chemotherapy and theranostics. However, the question arises about CNM's possible effect on the general toxic and immunotoxic effects of cytostatic preparations when they are administered mutually. This work aimed to study the combined effects of cyclophosphamide (CP) intoxication and CNMs oral administration in male Wistar rats.

Ļ

Fig. 1. Lethality of rats receiving intraperitoneal injections of CP and carbon nanomaterials with drinking water. Lethality is given as a percentage of the number of animals in the group.

IOCN

Fig. 2. Dynamics of changes in body weight of rats. Red arrows - the day of the introduction of CP

CP

1,0

0,8

0,6

0,4

0,2

0

OF ERYTHROCYTES (GPX)

SWCNT REDUCES ELEVATED LEVELS OF CYTOKINES IL13, IL17A, IL6, IL4 AND IL7

CONCLUSION. It has been shown for the first time that the combined introduction of carbon nanomaterials - multi-walled and single-walled carbon nanotubes together with the alkylating cytostatic agent cyclophosphamide (CP) into the rat body significantly reduces the mortality of animals caused by the action of CP, as well as suppresses the manifestations of its immunotoxic effect, which is reflected in the weakening of lymphopenia and recovery close to normal values levels of cytokines, chemokines/growth factors, including IL-4, IL-13, IL-17A, IFN-γ, IL-18, GM-CSF, GRO-KC, IL-12p70, IL-1 β , IL-7, TNF- α , and VEGF. The experimental data show that carbon nanotubes have the ability to significantly block the development of a "cytokine storm", which determines the main part of the most severe side effects of CP when used in chemotherapy of malignant tumors. This creates certain prospects for the use of carbon nanotubes as carriers of cytostatic drugs, which can increase selectivity and reduce the number of complications during chemotherapy.

WBC