The 3rd International Online-Conference on Nanomaterials 25 April - 10 May 2022|Online

High-capacity zinc vanadium oxides with long-term cyclability enabled by in-situ electrochemical oxidation for zinc-ion batteries

Xi Zhang^a, Xiaohong Sun^{a,*} (email:sunxh@tju.edu.cn)

a School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin 300072, China

Introduction

- The rechargeable aqueous zinc ion batteries hold great promise but are extremely limited by the lack of suitable cathodes.
- The instability and poor conductivity of vanadide need to be solved. *
- The introduction of metal ions act as "pillars" at interlayers of host * materials is an effective modification strategy.
- This work obtained vanadium oxides with different interlayer zinc * doping amount through in-situ electrochemical oxidation.

Fig 2. Electrochemical properties of ZVO and V₂O₅·nH₂O (electrochemical chain: Zn foil|3 M Zn(OTf)₂|ZVO or $V_2O_5 \cdot nH_2O$). (a) Rate performance of ZVO and V₂O₅·nH₂O.(b) Cyclability of ZVO and V₂O₅·nH₂O at 0.5 A g⁻¹. (c) Cyclability of ZVO and $V_2O_5 \cdot nH_2O$ at 5 A g⁻¹.

Fig 3. EIS patterns of all samples (a), CV profiles of ZVO-2 at different scan rates (b), the contribution ratio of capacitive capacities in ZVO-2.(c), GITT profiles and diffusion coefficients of all samples (d), Schematic diagram of the Zn^{2+}/H^{+} insertion mechanism on ZVO-2 cathode (e).

Conclusions

- * Zinc-inserted hydrated vanadium oxides are converted from VOOH in various phases through in-situ electrochemical oxidation.
- \star ZVO with appropriate zinc doping amount demonstrates best electrochemcial properties (508.3 mAh g⁻¹ (0.5 A g⁻¹), 80% retention after 5000 cycles, 348.6 mAh g⁻¹ at 5 A g⁻¹).
- \star The [ZnO] polyhedrons act as "interlayer pillars" to brace the entire structure and retain open channels for active Zn²⁺.
- \star The robust structure restrains the consumption of active materials and the accumulation of undesired by-products.

[1] K. Zhu, T. Wu, W. van den Bergh, M. Stefik, K. Huang, ACS Nano 15 (2021)10678-10688.

[2] D. Kundu, B. D. Adams, V. Duffort, S. H. Vajargah, L. F. Nazar, Nat. Energy 1 (2016) 16119. Reference

The financial support by the National Natural Science Foundation of China, NSFC (52073212, 51772205, 51772208) and General Program of Municipal Natural Science Foundation of Tianjin (17JCYBJC17000, 17JCYBJC22700).

Acknowledgments

Electrochemcial properties