

Multiphase manganese oxides with micron cage structure as high-performance cathode material for AZIBs

Name: Tingting Li

School of materials science and engineering

Introduction

Results

Preparation and microstructure of the materials

P2

Characterization of structure and properties of materials

Electrochemical performance

Energy Storage Mechanism

References

[1] P. He, Q. Chen, M. Yan, etc., Building better zinc-ion batteries: A materials perspective, EnergyChem. 1 (2019) 100022.

[2] D. Selvakumaran, A. Pan, S. Liang, G. Cao, A review on recent developments and challenges of cathode materials for rechargeable aqueous Zn-ion batteries, J. Mater. Chem. A 7 (2019) 1829-18236.

[3] C. Zhu, G. Fang, S. Liang, etc., Zhou, Electrochemically induced cationic defect in MnO intercalation cathode for aqueous zinc-ion battery, Energy Stor. Mater. 24 (2020) 394-401.
[4] J. Ji, H. Wan, B. Zhang, etc., H. Wang, Co^{2+/3+/4+}-Regulated Electron State of Mn-O for Superb Aqueous Zinc-Manganese Oxide Batteries, Adv. Energy Mater. 11 (2021) 2003203.

Acknowledgements

The authors gratefully acknowledge support from National Natural Science Foundation of China under grant No. 51372165 and No. 51772205.

Contact information

First author: Tingting Li (<u>Litt@tju.edu.cn</u>)

Corresponding author: Ruisong Guo (<u>rsguo@tju.edu.cn</u>)

Address: Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China.

Thank you !

Name : Tingting Li Major : Material Science

School of materials science and engineering