Reaction chambe

KrF* la

Device for te **F**

Ď

Hydroxyapatites of marine origin as sustainable candidates for implantology

L. Duta¹, G.E Stan², V. Grumezescu¹, G. Dorcioman¹, E. Matei², I. Zgura², O. Gherasim^{1,3}, G. Popescu-Pelin¹, F.N. Oktar^{4,5}

¹National Institute for Lasers, Plasma and Radiation Physics, Lasers Department, Magurele, Romania, <u>liviu duta@inflpr.ro</u>; ²National Institute of Materials Physics, Magurele, Romania; ⁹Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, Romania, ⁴Department of Bioengineering, Faculty of Engineering University of Marmara, Istanbul, Turkey; ⁹Advanced Nanomaterials Research Laboratory (ANRL), University of Marmara, Istanbul, Turkey;

Motivation

- I Development of implants easily integrated into the living body by using biomaterials. I Route to obtain a material with a bone-like architecture and composition → fabricate it from sustainable resources, of biological origin, such as waste products (*i.e.*, HA derived from fish bones, FB, or sea-shells). I Synthesis by PLD of bio-hydroxyapatite thin films (doping with 0.5, 1 and 2 wt.% of Li₃PO₄, MgF₂ and Ag). I Detailed morphological, structural, compositional and mechanical investigations → beneficial influence of doping agents on the characteristics of the synthesized structures.

Materials and Methods

- l PLD experiments, KrF* excimer laser source (λ = 248nm, τ_{FWHM}≤ 25ns, v = 10Hz), deposition parameters (p ≈ 50 Pa, H₂O vapors, d = 5 cm, E = 360 mJ, T = 500°C, F = 3.5 J/cm², N = 5000). I Simple (FB) and doped (with 0.5, 1 and 2 wt.% of Li₃PO₄, MgF₂ and Ag → FB:LiP, FB:MgF and FB:Ag).

Contact angle values inferred for simple and doped bio-hydroxyapatite coatings.

Conclusions

- □ Structural investigations → synthesis of films with different degrees of crystallinity, mainly influenced by the nature of the dopant/concentration and by the source material;
- □ Morphological examination → fabrication of films with rough surfaces, made of droplets, ideal for the good adhesion of cells and anchorage of implants in situ:
- Sina, □ Contact angle measurements → hydrophilic behaviour→ rapid bone regeneration; □ Bonding strength adherence → values more than three times higher than the threshold imposed by ISO standard regulating the load-bearing implant coatings (>15 MPa);
- Preliminary results -> incorporation of dopants into BioHA thin films can provide a delivery system for bioactive agents able to promote osseointegration, in correlation with an improved anchorage of bone metallic implants for suitable use in implantology.

Acknowledgements

This work was supported by a grant of Ministry of Research and Innovation, CNCS - UEFISCDI, project number PN-III-P1-1.1-TE2019-1449 (TE 189/2021) and Core Programme 16N/2019