The 3rd International Online-Conference on Nanomaterials 10 MAY 2022 ONLINE

Simultaneous realization of high sulfur utilization and lithium dendrite-free via 3D carbon network structure based nanomaterials toward lithium-sulfur batteries Xinqi Zhao, Xiaohong Sun *, Song Wang, Fuyun Li, Tingting Li

School of Materials Science and Engineering, Tianjin University, China (sunxh@tju.edu.cn)

> MDPI 💮 nanomaterials

ABSTRACT

IOCN

2022

The development of LSBs is largely hindered by the inferior sulfur utilization and uncontrollable dendritic growth. Herein, a hierarchical functionalization strategy of stepwise catalytic-adsorption-conversion for sulfur species via the synergetic of the efficient catalytic host material and light multifunctional interlayer material has been proposed in this work to concurrently address the issues of the dual-side electrodes. The SnS2 micro-flowers embedded into the natural three-dimensional interconnected carbonized bacterial cellulose (CBC) nanofibers is presented as a sulfur host (CBC/SnS₂), equipping with numerous catalytic sites for the rapid catalytic conversion of sulfur species. Moreover, the distinctive CBC-based heterostructure conductive network as interlayer material is formed through the lewis acid-base interaction of SnO₂/SnS₂ heterostructures with uniform natural hydroxyl groups on the BC surface accompanying with the high conductive CNTs (CBC/SOSC), which achieves rapid anchoring-diffusion-conversion of LIPSs, Li+ flux redistributed and uniform Li deposition. LSBs equipped with these two materials exhibits outstanding stable cycling performance, with an ultra-low capacity attenuation. low capacity attenuation

on of LSBs equipped with CBC/SnS₂/S cathode and Figure 1. Schematic illus CBC/SOSC interlayer mo

n test by CBC (II), CBC (IV), and UV-vis spectrum with different on in Li_2S_6 solution for 10 h (a); Sn 3d (c), C S spectra of CBC/SOSCCV plots of symmetric

(s)

Voltage (V)

CONCLUSION

In summary, we have designed the feasible sulfur host and interlayer based on the natural 3D interconnected network BC material co-applied into LSBs to solve the issues of low sulfur tulization, polysulfide shuttle effect and Li dendrites on the double electrode side. The CBC/SnS₂ sulfur host equipped with enormous active sites offers efficient conversion of sulfur and polysulfides, boosting the sulfur electrochemistry, and consequently enabling high utilization of sulfur in particular under elevated loadings. Meanwhile, the CBC/SOSC interlayer can realize the rapid anchoring-diffusion-conversion process of LiPSs through 3D carbon-based heterostructure network attributing to the strong chemisorption of SnO₂, the heterointerface of SnO₂-SnS₂ heterostructure and the efficient catalytic function of SnS₂. It can also be used as a facilitator to redistribute the Li⁺ flux evenly, thereby significantly profitably buffer the volume change in the working LSBs. Therefore, the CBC/SNS₂/S@CBC/SOSC battery maintains an excellent attenuation rate and an impressive discharge capacity under high sulfur mass loading.