GOLD NANOPARTICLES AS THERAPEUTIC AGENT FOR RADIOTHERAPY OF PC3 PROSTATE CANCER CELL LINE

Soares, S.¹⁻⁶, Guerreiro, S.G.^{3,7,8}, Sales, M.G.F.^{1,5,9}, Correa-Duarte, M.^{4,10,11}, Fernandes, R.^{2,3,12}

¹BioMark-CEB/SEP, Polytechnic of Porto, Porto, Porto, Porto, Porto, Porto, Porto, Porto, Porto, et al. (and the second of the Innovation in Health (i3S), Porto, Portugal; ⁴Faculty of chemistry, University of Vigo, Vigo, Spain; ⁵CEB, Centre of Biological Engineering of Minho University, Braga, Portugal; ⁶School of Medicine and Biomedical Sciences, University of Porto, Portugal; ⁷Institute of Molecular Pathology and Immunology of the University of Porto-IPATIMUP, Porto, Portugal; *Department of Biomedicine, Biochemistry Unit, Faculty of Medicine, University of Porto, Porto, Portugal; 'Biomark/UC, Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal; 10 CINBIO, University of Vigo, 36310 Vigo, Spain; 11 Southern Galicia Institute of Health Research (IISGS), and Biomedical Research Networking Center for Mental Health (CIBERSAM), Spain; 12 Faculty of Health Sciences (FCS) & Hospital Escola Fernando Pessoa (HEFP), University Fernando Pessoa (UFP), Porto, Portugal

INTRODUCTION

- Radiotherapy (RT) is one of the most used approaches in patient's treatment with prostate cancer (PCa).¹
- Besides the evolution of equipment and technology, this therapy still has some limitations and nanotechnology can help to overcome these problems.²
- Over the years, gold nanoparticles (AuNP) have attracted a lot of interest in cancer therapies due their unique properties (figure 1).^{3,4}

MAIN GOAL

The principal goal of this work was compared two different types of AuNPs – spherical (AuNP_{sp}) and rods (AuNP_r) as potentials radiosensitivity agents in human prostate cancer cell line (PC3) in radiotherapy treatment.

RESULTS AuNPs characterization UV-Vis SIZE HISTOGRAM TEM G D 00000000 Diameter of AuNPr. nm

Figure 3 – Scheme of AuNPs with PEG (A, B), UV-Vis spetra with and without PEG (C, D), and Transmission electron microscopy images – TEM (150000x) images of AuNPs with PEG staining with phosphotungstic acid (E,F) and size histogram based TEM images (G,H). The size histogram were obtained by counting over 50 particles.

AuNPs uptake in PC3 cell lines

Cells are treated with F hypofractionation regimen 2.5 different concentrations of AuNPs from 0 to 1.0 mM Gy/fraction (3 days) during 24h

ell uptake by TEN Viability by PrestoBlue^T

Figure 2 – General scheme of research methodology. (A) The sketch of the preparation of different chemical synthesis of AuNPs, and AuNP, by different methods; (B) Experimental steps from cell culture to assay analysis.

CONCLUSION

- Our results showed that the shape of AuNPs influence the response to RT.
- This is the first study evaluated the effect of shapes of AuNPs as potential radiosensitizing agent in PC3 cells (prostate cancer cells).
- AuNP_{sp} and AuNP_r demonstrated be effective to reduce the cell viability when associated to RT.
- Comparing both nanostructures, AuNP, demonstrated better results and a higher dose-dependency with and without radiation.

ACKNOWLEDGEMENTS

Sílvia Soares is grateful for the financial support of Fundação para a Ciência e Tecnologia (grant reference: SFRH/BD/138271/2018) and thanks the kind collaboration of all those involved in the radiotherapy service at Centro Hospitalar Universitário de São João for carrying out radiotherapy treatments.

Figure 4 – TEM images of cellular uptake of AuNPs of different shapes in PC3 cells incubated with 10 μM Au⁰ concentration. (A) represents PC3 without any treatment; (B1 and C1) represent the overall morphological appearance of PC3 cells when treated with AuNP, and AuNP. respectively; (B2 and C2) represent AuNPs taken up by PC3 cells, treated with AuNPs and AuNP, respectively, Scale bar: (A, B1, C1) 1µm and (B2, C2) 100nm.

Effect of AuNPs in radiosensitivity of PC3 cells

Figure 5 – Effect of AuNPs and ionizing radiation (IR) on the viability of PC3 cell line – A and B represent the viability related with AuNPs and AuNPr respectively. The cells were treated with different concentrations (0-1mM) for 24h prior to being exposed to a cumulative dose of 7,5Gy in three fractions of 2,5Gy with 6MV photon beam. Cell viability (%) was measured 24h post-irradiation using the PrestoBlue assay. Results are expressed as the mean ± SD of 3 replicates. Significance of different treatments compared to control of the respective day is represented by black lines shown as * p <0.05, ** p < 0.01, *** p < 0.001 and **** p < 0.0001.

Universida, Migo

REFERENCES

¹ Mottet N, Bergh RCN, Briers E, Bourke L, Cornford P, Santis M, et al. EAU-ESTRO-ESUR-SIOG Guidelines On Prostate Cancer, 2018; ² Murata, K., Hosokawa, Y."Understanding the mechanism underlying the acquisition of radioresistance in human prostate cancer cells". Oncology Letters 17.6 2019; ⁴ Singh P, Pandit S, Mokkapati V, Garg A, Ravikumar V, Mijakovic I. Gold Nanoparticles in Diagnostics and Therapeutics for Human Cancer. Int J Mol Sci. 2018;19(7); ⁵ Kawamura G, Nogami M, Matsuda A. Shape-controlled metal nanoparticles and their assemblies with optical functionalities. Journal of Nanomaterials. 2013;2013:2.