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Abstract: We theoretically study the effect of quantum exceptional points on the optical properties of
a quantum dot placed inside an optical microcavity and interacting with a weak probe field. Using
a quantum approach, we study the steady state behavior of the system and calculate the optical
susceptibility. By separating the total susceptibility to two equivalent susceptibilities, corresponding
to fictitious free quantum emitters, we show exceptional points drastic effect to the optical properties
of the system close to the region where the exceptional point is formed. We further examine the
optical properties of the system in the regions of the parameter space that arise from the exceptional
condition, namely the strong coupling regime and the weak coupling regime.
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1. Introduction

Exceptional Points (EPs) have been studied in a plethora of classical optical sys-
tems [1–4] and can dramatically modify the optical response of the studied system. Re-
cently, there is increasing interest in applying the EP formalism in fully quantum systems
to achieve efficient control at the quantum level and show the drastic effect EPs have on the
system’s properties [5–8]. In this work, we theoretically study the effect of quantum EPs on
the optical properties of a quantum dot placed inside an optical microcavity and interacting
with a weak probe field. For the analysis of the system, we use a quantum approach, where
we model the quantum dot as a two-level system and describe the light-matter interaction
with the proper master equation, including the spontaneous decay and the pure dephasing
of the quantum dot, as well as the decay of the optical cavity. We also define the effective
non-Hermitian Hamiltonian of the system and derive the necessary conditions for the
formation of an EP, the point where the eigenvalues of the Hamiltonian coalesce.

We then study the steady state behavior of the system and calculate the optical sus-
ceptibility from the coherences between the vacuum and the system, which can lead to
cavity induced transparency [9,10]. By separating the total susceptibility to two equivalent
susceptibilities, corresponding to fictitious free quantum emitters, we show EPs drastic
effect to the optical properties of the system close to the region where the exceptional
point is formed. We further examine the optical properties of the system in the regions of
the parameter space that arise from the exceptional condition, namely the strong (coher-
ent) coupling regime and the weak (incoherent) coupling regime. In conclusion, we give
an overview of the effect of EPs in a purely quantum system and show how that effect
translates in the observable, which are the classical properties of the system.
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2. Materials and Methods

We consider a system consisting of a quantum dot, modeled as a two-level quantum
emitter (QE), placed inside an optical microcavity. The QE is coupled to the electromagnetic
field inside the cavity with coupling rate g. The QE is also subject to decay γ due to
spontaneous emission and a pure dephasing rate γ∗ (in our analysis we take γ∗ = 104γ, to
be in agreement with solid state QEs like quantum dots). Additionally, the cavity decays in
free space with a decay rate κ. Lastly, we consider an external probe electromagnetic field,
E = E eiωpt + c.c., that interacts with the QE. Thus, the Hamiltonian is H0 = ωaσ+σ− +
ωca†a + gσ+a + Ωei∆tσ+ + h.c., where Ω = µE corresponds to the Rabi frequency of the
e → g transition, µ is the dipole moment of the QE and ∆ = ωp − ωa is the detuning.
In this work we take h̄ = 1. We can define an effective non-Hermitian Hamiltonian
that encompasses both the coherent and the dissipative terms of our system, given by
He f f = H0 − (iκ/2)a†a− (iγ/2)σ+σ− − (iγ∗/2)σ†

z σz.

Figure 1. Illustration of the system under consideration. A quantum dot (grey) is placed inside
an optical microcavity of one electromagnetic mode (pink). The QE is coupled to the cavity mode
with coupling constant g and to an external probe field. Also, the QE experiences decay γ due to
spontaneous emission and pure dephasing with rate γ∗. Lastly, the cavity is open and thus has decay
rate κ.

We investigate the eigenvalues of the effective Hamiltonian for the case of a weak
probe field, meaning Ω� g, γ, κ. The point where the eigenvalues coalesce corresponds to
the condition 2g/|γ + γ∗ − κ| = 1/2, which is independent of the probe field. In order to
study the optical properties of the system, we need to study its dynamics and steady state,
by solving the Lindblad equation and evaluating the coherences with the vacuum. We find
that the susceptibility is given by

χ = ξ
∆ + i κ

2

g2 −
(

∆ + i γ+γ∗
2

)(
∆ + i κ

2
) . (1)

Here, ξ = Nµ/ε0, where N is the atomic density of the quantum dot and ε0 is the
vacuum permittivity. The imaginary part of the susceptibility is a measure of the probe
absorption of the system and the real part shows the dispersion relation of the system.

We separate the total susceptibility of the system in two parts, corresponding to two
“free QE” susceptibilities, such that χ = χ1 + χ2, which are given by

χ1 = ξ
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where Z = 4g2 − (γ + γ∗ − κ)2/4. These “free QE” susceptibilities are of the form
χ = ξ A

(∆−∆0)+iw/2 , whose real and imaginary parts are the well known dispersion

χr = ξ
A(∆−∆0)

(∆−∆0)2+(w/2)2 and Lorentzian absorption χi = ξ
A(w/2)

(∆−∆0)2+(w/2)2 curves respectively,
with amplitude A which is a complex number.

3. Results and Discussion

In Figure 2 we plot the imaginary part of the susceptibilities corresponding to the
absorption of each “free QE” and of the total system for weak cavity decay κ = 0.001γ and
strong dephasing rate γ∗ = 104γ, as a function of the coupling g and the detuning ∆. We
clearly see that for 2g/|γ + γ∗ − κ| = 1/2 the “free Q.E.” susceptibilities tend to infinity
while the system’s susceptibility is finite and has two well separated, symmetric peaks.
Thus, we can split the parameter space in two regions, the region of incoherent coupling
2g/|γ + γ∗ − κ| < 1/2, and the region of strong coupling 2g/|γ + γ∗ − κ| > 1/2. Special
treatment will be given to the region where 2g/|γ + γ∗ − κ| → 1/2. In the incoherent
coupling region, χi

1 is a narrow Lorentzian curve centered around ∆ = 0 with negative
amplitude, while χi

2 is a wide Lorentzian curve centered around ∆ = 0 with positive
amplitude. As g decreases, χi

1 becomes narrower and with smaller amplitude while χi
2

practically stays the same, thus the “dip” of the total susceptibility χi at zero detuning
becomes less visible. In the coherent coupling regime, χi

1 and χi
2 are well separated and

symmetric around zero detuning, making the total susceptibility χi to have two distinct
symmetric brunches. More specifically, for large enough coupling, only the Lorentzian
part contributes thus each curve has as center the detuning ∆ = ±

√
Z/2 and width

w = (γ + γ∗ + κ)/2. While the width stays the same as the coupling increases, their
amplitude decreases as approximately 1/g.

(a) (b) (c)

Figure 2. Imaginary part of the susceptibility of the equivalent “free QE” 1 and 2 and for the total
system for small cavity decay κ = 0.001γ and strong dephasing γ∗ = 104γ in the parameter space of
the atom-cavity coupling g and the detuning of the probe field ∆.

Lastly, we investigate the behavior of the susceptibilities close to the EP as a function of
the detuning (see Figure 3). We observe that the closer we get to the EP, the larger the “free-
QE” susceptibilities become, and thus exactly at the EP they diverge to infinity. Additionally,
the way the “free-QE” susceptibilities diverge depends on the sign of the detuning and on
the region from which we approach the EP (depends on the kind of the limit 2g/|γ + γ∗ −
κ| → 1/2±). When the system approaches the EP from the incoherent coupling region, the
two susceptibilities correspond to a Lorentzian function (Figure 3), which are centered at
zero detuning and have comparable and opposite amplitudes. At the limit, χi

1 diverging
to −∞ and χi

2 diverging to +∞ for all ∆, but the total susceptibility remains a positive
finite number. Thus, the total susceptibility has a wide “dip” at zero detuning and two
symmetric peaks. When the system approaches the EP from the coherent coupling region,
both susceptibilities correspond to Lorentzian dispersion functions (Figure 3). Similarly to
the previous case, at the limit, χi

1 is diverging to +∞ for negative detuning and to −∞ for
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positive detuning, while χi
2 diverging to −∞ for negative detuning and to +∞ for positive

detuning. Again, the total susceptibility is finite and we see that it is a continuous function
(limg→g±EP

χ = χ).
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Figure 3. Imaginary part of the susceptibility of the equivalent “free QE” 1 and 2 and for the total
system for small cavity decay κ = 0.001γ and strong dephasing γ∗ = 104γ as a function of ∆ for
parameters that approach the EP from (a) the left (g/|γ + γ∗ − κ| → 1/4−) and (b) from the right
(g/|γ + γ∗ − κ| → 1/4+) respectively.

Abbreviations
The following abbreviations are used in this manuscript:

EP Exceptional Point
QE Quantum Emitter
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