Preparation and Characterization of Dithiocarbazate Loaded Mesoporous Silica Nanoparticles

Thacilla Menezes ¹^{*} Tatiana Andreani ^{1,2} Carlos Pereira ¹ 1 Chemistry Research Center (CIQ-UP), Faculty of Sciences of the University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal. 2 Research Centre of Sustainable Agrifood Production (GreenUPorto) *Email: up201811986@edu.fc.up.pt

Faculty of Sciences of the University of Porto (FCUP) Department of chemistry and biochemistry

Introduction and Objectives

Dithiocarbazates comprise an important class of Schiff bases that have remarkable pharmacological applications due to the imine group present in their structure [1]. However, the lipophilic character of 1-(S-benzyldithiocarbazate)-3-methyl-5-phenylpyrazole (DTC) (figure 1) limits its gastrointestinal absorption leading to low oral bioavailability [2,3]. Using DTC-loaded nanoparticles, such as mesoporous silica nanoparticles (MSiNP), synthesized by the Stöber method, which allows controlling pores, walls, and surfaces, can be an excellent strategy to overcome these drawbacks [4].

Results and Discussion

POTENTIAL and DYNAMIC LIGHT (DLS), SCATTERING **ENTRAPMENT** ZETA **EFFICIENCY**

Table 1. Z-Ave, PDI and ZP, EE and DL values of MSiNP/MSiNP-DTC. Results are expressed as mean ± standard deviation (SD) of three independent measurements)

Sample	Z-Ave ± SD (nm)	PDI ± SD	ZP ± SD (mV)	EE ± SD	DL ± SD
--------	-----------------	----------	--------------	---------	---------

Figure 1: Structures of the 3-methyl-5-phenyl-pyrazoline-1- (S -benzyldithiocarbazate) (DTC).

In this sense, the present work aims at contributing to the understanding of several physicochemical characteristics related to the mean particle size (Z-Ave), polydispersity index (PDI), zeta potential (ZP), internal structure (Transmission Electron Microscope (TEM) analysis; Fourier-transform infra-red and Nitrogen Adsorption), Thermal analysis (Differential Scanning Calorimetry–DSC), drug load capacity (DL) and entrament efficiency (EE) of MSiNP proposed as a nanocarrier for DTC delivery.

Methods

Synthesis of porous silica nanoparticles was carried out under a high concentration of precursors, which results in nanoparticles of highly uniform spherical shape (Scheme 1).

MSiNP	< 168.4 ± 3.9)	(0.29 ± 0.02)	(+14.6±0.5)	-	-
MSiNP-DTC	(175.7 ± 1.0)	0.38 ± 0.04	(-21.9 ± 0.3)	95. 77 ± 0.08%	4.79 ± 0.004%

Transmission Electron Microscope (TEM) analysis

FOURIER TRANSFORM INFRARED (FTIR)

Wavenumber (cm⁻¹)

Figure 1. TEM images of MSiNP (a) and MSiNP-DTC (b) and their Histograms (size distributions)

Size (d.nm

Figure 2. Vibrational spectrum in the infrared region of the compound DTC in KBr.

Scheme 1: Synthesis of MSiNP and MSiNP-DTC

Conclusions

- DTC compound was successfully loaded into the mesoporous matrix (MSiNP) by means of a simple and efficient synthesis;
- Z-Ave values corroborated that the immobilization of the DTC did not drastically change the particle size of MSiNP and PDI values indicate the formation of monodisperse suspensions;
- The ZP values changed from positive values to negative values, suggesting the modification of the MSiNP surface with DTC;
- From FTIR results, the main DTC band suffered displacement, by increasing the intensity of the bands related to MSiNP;
- There was a change between loaded and unloaded MSiNP in the BET results. Nevertheless, the pore size was larger after loading and thus, can be related to the

calculated by ImageJ.

Thermal Analysis

Figure 4. DSC profiles of MSiNP (a) and MSiNP-DTC (b).

NITROGEN ADSORPTION

Figure 3. Vibrational Spectrum in the Infrared region of the MSiNP (a), MSiNP calcined (b) and MSiNP-DTC (c).

(b)

presence of DTC on the matrix surface instead of the pores;

• Therefore, the data suggest that MSiNP-DTC have potential for the use in drug delivery applications, improving stability and overcoming the low water solubility of Schiff's dithiocarbazate bases.

-References

1. Manan, M. A. F. A.; Tahir, M. I. M.; Crouse, K. a.; How, F. N.-F.; Watkin, D. J.J. Chem. Crystallogr. 2011, 42 (2), 173–179.

2.Costa, A. R.; de Menezes, T. I.; Nascimento, R. R.; dos Anjos, P. N. M.; Viana, R. B.; de Araujo Fernandes, A. G.; Santos, R. L. S. R. J. Therm. Anal. Calorim. 2019, 138,1683–1696.

3. de Menezes, T. I.; de Oliveira Costa, R.; Sanches, R. N. F.; de Oliveira Silva, D.; Santos, R. L. S. R. Colloid Polym. Sci. 2019, 297 (11–12), 1465–1475.

4. Paula, A. J.; Martinez, D. S. T.; Júnior, R. T. A.; Filho, A. G. S.; Alves, O. L. J. Braz. Chem. Soc. 2012, 23 (10), 1807–1814.

Acknowledgements

NORTE2020 through project Norte-08-5369-FSE-000050 for financial support of a PhD grant. This work was partially supported by the FCT under Research Grant UIDB/00081/2020 – CIQUP

Table 2: Textural properties of MSiNP: SBET (specific surface area,); Pv (pore volume, by BJH); PD (average pore diameter, by BJH).

