$Li_{1+y}Ti_{2-x-y}Ge_{x}AI_{y}(PO_{4})_{3}$ NASICON-type electrolytes with enhanced conductivity

for solid state lithium-ion batteries

<u>E.A. Kurzina</u>, I.A. Stenina Kurnakov Institute of General and Inorganic Chemistry RAS

 \checkmark Li_{1.2}Ti_{1.6}Ge_{0.2}Al_{0.2}(PO₄)₃ exhibits the highest ionic conductivity at room temperature (1,4·10⁻⁴ S/cm).

✓ Detected ³¹P NMR signals have been assigned to different PO₄Ti_{4-n-m}Ge_nAI_m arrangements assuming a random distribution of Ti,AI, and Ge cations in NASICON compounds. The intensity of the components located at less negative values becomes more intense as the AI content increases.

 \checkmark The formation of Li_{1+y}Ti_{1.8-y}Ge_{0.2}Al_y(PO₄)₃ occurs through the intermediate formation of titanium pyrophosphate.

✓ The precursor ball-milling before the final annealing leads to a conductivity increase.

