

Proceedings

Fe-modified TiO² Nanotube Layer as a Photochemically Versatile Material for the Degradation of Organic Pollutants in Water †

Sridhar Gowrisankaran 1,*, Guru Karthikeyan Thrinavukkarasu ¹ , Muhammad Bilal Hanif ¹ , Viktoriia Liapun ¹ , Tomas Roch ² , Leonid Satrapinskyy ² , Gustav Plesch ¹ , Martin Motola ¹ and Olivier Monfort 1,*

- ¹ Comenius University in Bratislava, Faculty of Natural Sciences, Department of Inorganic Chemistry, Ilkovicova 6, Mlynska Dolina, 842 15 Bratislava, Slovak republic; thirunavukkarasu1@uniba.sk (G.K.T.); hanif1@uniba.sk (M.B.H.); tomas.roch@fmph.uniba.sk (T.R.); gustav.plesch@uniba.sk (G.P.); martin.motola@uniba.sk (M.M.)
- ² Comenius University in Bratislava, Faculty of Mathematics Physics and Informatics, Department of Experimental Physics, Mlynska Dolina, 842 48 Bratislava, Slovak republic; leonid.satrapinskyy@fmph.uniba.sk
- ***** Correspondence: monfort1@uniba.sk (O.M.); gowrisankaran1@uniba.sk (S.G.); Tel.: +421951598331
- † Presented at the 1st International Electronic Conference on Processes: Processes System Innovation, 17–31 May 2022; Available online: https://ecp2022.sciforum.net.

Abstract: TiO² nanotube layers (TNT) are prepared by electrochemical anodization of Ti foil in an electrolyte composed of ethylene glycol, ammonium fluoride, and water. The surface of TNT is modified by iron using spin-coating of Fe(NO3)3/IPA (isopropyl alcohol) solution of different concentrations (10µM-100mM). The as-prepared materials are annealed at 450 °C for 2 h to form crystalline Fe-TNT. The phase identification and surface morphology of the materials are investigated by XRD and SEM/EDX, respectively. The novelty of this work is based on the investigation of different photochemical processes that could occur simultaneously, and it includes mainly photocatalysis and Fenton-based processes since iron is a Fenton-active element. To this end, the degradation of caffeine, an organic pollutant, is performed under solar-like radiation at pH = 3 using different systems that are Fe-TNT material alone, a radical precursor alone ($H_2O_2 = 1$ mM), and Fe-TNT combined with H₂O₂. It is worth noting the degradation mechanism of the organic pollutants occurs via advanced oxidation processes where hydroxyl radicals have been identified as the main reactive oxygen species. One of the main goals of this work is to determine the contribution of the different involved photochemical processes (photocatalysis, photo-Fenton, and photolysis) along with the potential synergy between all these processes. To resume, this work provides new insights into the concept of photochemical versatility, which is scarcely described in the literature.

Keywords: nanotube, photocatalysis; Fenton; synergy; pollutant; water

1. Introduction

Water plays a vital role for all living beings. Although one third of the Earth's surface is covered with water, only 3% is consumable, out of which <1% is accessible [1]. The anthropogenic activities, especially those from industries, increase the rate of pollutants in the natural environment by releasing treated wastewaters that are not efficiently cleaned. Therefore, persistent and emerging organic pollutants including toxic chemicals, pharmaceutical compounds, pesticides, etc. are accumulated in the environment thus causing harmful diseases not only to mankind but also to the ecosystem [2]. It is the case of caffeine which is one of the most used psychoactive substance and which is often detected in natural waters [3]. It is essential to look for efficient wastewater treatment. Advanced oxidation processes (AOPs) have become an alternative technology for

Citation: Lastname, F.; Lastname, F.; Lastname, F. Title. *Proceedings* **2022**, *69*, x. https://doi.org/10.3390/xxxxx

Academic Editor: Firstname Lastname

Published: date

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2022 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

efficiently removing persistent organic pollutants from the water due to the generation of highly reactive inorganic radicals, including •OH, that oxidize and mineralize the pollutants [4]. Among the various AOPs, the photocatalysis and the Fenton-based processes are promising due to their low cost, ambient reaction conditions, and easy operation procedures. In photocatalysis, a semiconductor photocatalyst can generate electron (*e*⁻) and hole (*h*⁺) pairs (Equation 1), which in turn forms reactive oxygen species (ROS) such as O2 \cdot and \cdot OH (Equation 2 and 3), under light irradiation with energy higher than the photocatalyst energy bandgap (*Eg*) [5,6]. The Fenton and photo-Fenton process is based on the generation of \bullet OH in the presence of Fe(III), H₂O₂, and light irradiation (Equation 4, 5 and 6) [7]. Thus, the combination of Fenton-based processes with photocatalysis is an effective strategy to improve the efficiency of water pollutant removal [8].

$$
Photocatalyst + hv \rightarrow e^{-} + h^{+}
$$
 (1)

$$
e^{-} + \mathrm{O}_2 \rightarrow \mathrm{O}_2 \bullet \tag{2}
$$

$$
h^+ + \text{H}_2\text{O} \longrightarrow \text{^{\bullet}OH} + \text{H}^{\scriptscriptstyle+} \tag{3}
$$

$$
Fe^{2+} + H_2O_2 \rightarrow Fe^{3+} + OH \cdot + HO^{\bullet}
$$
 (4)

$$
\text{Fe}^{3+} + \text{H}_2\text{O}_2 \rightarrow \text{Fe}^{2+} + \text{HOO}^{\bullet} + \text{H}^{\bullet}
$$
 (5)

$$
\text{Fe}^{3+} + \text{H}_2\text{O} + hv \rightarrow \text{Fe}^{2+} + \text{H}^+ + \text{HO}^\bullet \tag{6}
$$

The aim of our work is to understand the simultaneous coupling of photocatalytic and Fenton-based processes that are triggered using a nanostructured material. To this end, we report the use of TiO² nanotube layer that are modified at its surface by Fe(III) (Fe-TNT) as an efficient dual-function nanomaterial for efficient degradation of caffeine in water. The study of Fe-TNT layers provides new insight into the coupling mechanism of photocatalysis and Fenton-based processes as an innovative water treatment technology.

2. Materials and Methods

TNT layers were prepared by electrochemical anodization at 60 V for 4 h of 1.5 cm x 1.5 cm Ti foil (99.7%, Sigma Aldrich) in an electrolyte composed of ethylene glycol (EG, CentralChem) and ammonium fluoride (NH4F, CentralChem). The as-deposited TNT layers were then annealed at 450 °C in the air for 2 h. Fe surface-modified TNT layers were prepared by spin-coating technique of $Fe(NO₃)₃$. 9H₂O solution of different concentrations (10 μ M, 100 μ M, 1 μ M, 10mM, 100mM) in IPA, followed by annealing at 450 \degree C in the air for 2 h to obtain Fe(III) surface-modified TNT (Fe-TNT). The morphology of Fe-TNT was analyzed by SEM/EDX (Tescan Lyra III). The crystalline phase composition was determined by XRD (PANalytical X-ray; Cu *Kα*, *λ* = 1.5418 Å).

The photo-induced degradation of caffeine solution (CAF, ReagentPlus® , Sigma Aldrich; 20 ppm) using Fe-TNT with different concentration of Fe was studied under solarlike light (HQI TS–OSRAM 400 W, 1.3 mW cm–² in the range 335 – 380 nm). The photocatalysis and Fenton-based processes were performed with and without 1mM H₂O₂, respectively. All the photo-induced experiments were performed at pH = 3 in 30 mL solution with constant air bubbling for 4 h. Before irradiation, the mixtures were placed in the dark for 30 min to reach adsorption/desorption equilibrium. To investigate the degradation extents of CAF, 0.5 mL of the mixture was sampled out every 30 minutes and quenched into 100 µL MeOH. The absorbance of caffeine and its degradation byproducts was followed at 272 nm by a UV-vis spectrophotometer (Jasco V-530). In addition, the stability of the Fe-TNT nanomaterials was investigated by determining the amount of Fe leached in the solution during CAF degradation. To this end, 0.5 mL is sampled out every 30 min and

mixed with 60 μ L of 0.5M ascorbic acid (to reduce aqueous Fe(III) into Fe(II)), 50 μ L of 20 mM ferrozine solution (to form Fe(II)-ferrozine complex), and 100μ L of phosphate buffer solution. The complex absorbance along with its extinction coefficient (27900 cm⁻¹ M⁻¹ at 562 nm) were used to estimate the concentration of leached iron by the Beer-Lamber equation.

3. **Results and Discussion**

The XRD patterns of TNT and the different Fe-TNT (**Figure. 1**) confirm the presence of the TiO² anatase phase (ICDD 03-065-5714). The diffractions of metallic Ti (ICCD 00- 044-1294) are from the foil which supports the nanotube layers [9]. From the XRD patterns, the presence of iron oxide or oxohydroxide cannot be detected by XRD for two reasons: (i) the annealing temperature is not high enough to get crystalline compound, and (ii) the amount of deposited Fe(III) is low. It worth noting that higher annealing temperature than 450 °C was not used to avoid conversion of anatase into rutile TiO₂ phase. To confirm the presence of iron on the surface of TNT, EDX analyses are performed (**Table. 1**) and the iron ratio is estimated in the range $0.1 - 1.5$ at%. Such analysis also supports XRD measurements since the atomic ratio Ti:O is approximatively 1:2 (**Table. 1**). The morphology of TNT and Fe-TNT is investigated by SEM (**Figure. 2**). The images reveal the nanotubular structure of Fe-TNT with an average diameter of the nanotube of about 120 nm.

Figure 2. SEM images of TNT and Fe-TNT - (a) TNT, (b) 10µM Fe-TNT, (c) 100µM Fe-TNT, (d) 1mM Fe-TNT, (e) 10mM Fe-TNT, (f) 100mM Fe-TNT

TNT Modified Fe	Carbon	Oxygen	Iron	Titanium
	$(at\%)$	$(at\%)$	$(at\%)$	$(at\%)$
10μM Fe-TNT	2.24	65.47	ND	32.29
100μM Fe-TNT	1.88	62.96	0.12	35.05
1mM Fe-TNT	1.93	60.29	0.39	37.37
10mM Fe-TNT	2.45	60.25	0.43	36.87
100mM Fe-TNT	4.82	57.32	1.56	31.87

Table 1. EDX analysis of Fe-TNT. *(ND: Non detectable)*

The degradation extents of CAF after 4 h reactions with Fe-TNT under solar-like radiation with and without H2O² are presented in Table. 2**.** In the absence of H2O2, the degradation of CAF increases from 22% to 30% and 25% using 10µM Fe-TNT and 100 µM Fe-TNT, respectively, compared to non-modified TNT. At higher Fe(III) concentration, the degradation efficiency of CAF strongly decreases to 0%. This observation is explained by the increase of •OH production (data not shown) probably due to a positive effect of Fe(III) on the separation of e/h⁺ pair. In addition, photo-Fenton reaction (*Equation*6) might occur since small amount of iron is leached into the solution. However, as the concentration of Fe(III) increases at the surface of TNT, the photocatalytic process is limited. It can be a consequence of iron aggregates that deactivate photocatalytic $TiO₂$ sites. On the other hand, in the presence of H_2O_2 , the degradation of CAF increases from 27% to 100% for TNT modified by Fe(III) in the range $10 \mu M - 100 \text{ mM}$, respectively. The observed increase is due to a strong contribution of Fenton-based processes (Equations 4-6) along with H_2O_2 photolysis (Table. 2). The contribution of generation of \bullet OH by reaction of H2O2 with photogeneratd e- might be lower since the photocatalysis decreases with increasing Fe(III) contents in the absence of H_2O_2), However, for non-modified TNT, this latter process is significant with an increase of degradation extent from 22% to 41% without and with H2O2, respectively (Table. 2).

Table 2. Degradation extents of CAF after 4 h under solar-like radiation by TNT and Fe-TNT at pH $=$ 3 with and without 1 mM H₂O₂.

TNT Modified Fe	Photocatalysis + H_2O_2	Photocatalysis
TNT	41%	22%
10μM Fe-TNT	27%	30%
100μ M Fe-TNT	36%	25%
1mM Fe-TNT	48%	8%
10mM Fe-TNT	100%	0%
100mM Fe-TNT	100%	0%
H ₂ O ₂ photolysis	12%	n.a.

The use of Fe-TNT at $pH = 3$ as both photocatalytic nanomaterial and Fenton nanocatalyst exhibits some limits: the iron leaching (**Table. 3**). However, such an observation is crucial since it confirms that Fenton-reaction probably occurs in the solution (or close to the nanomaterial/solution interface) and not at the surface of Fe-TNT.

Table 3. Fe leaching from Fe-TNT during CAF degradation under solar-like light at pH = 3 with 1 mM H2O2 (similar value are also obtained in the absence of H2O2).

Time	$Fe 10 \mu M$	Fe 100 μ M	Fe 1mM	Fe 10mM	Fe 100mM
	$0.18\mu M$	$0.44\mu M$	$1.8\mu M$	$0.5\mu M$	$0.3\mu M$
60	$0.26\mu M$	$0.1\mu M$	$1.8\mu M$	$4 \mu M$	2μ M
120	$0.25 \mu M$	$0.21\mu M$	$1.0\mu M$	6µM	$4 \mu M$
180	$0.25\mu M$	$0.45\mu M$	$1.2 \mu M$	$11\mu M$	6μ M

Although the iron leaching can be seen as a drawback, it can lead to further development of photocatalysts as loading materials for iron to trigger Fenton-based processes. Indeed, at circumneutral pH, iron leaching does not occur (data not shown), but a selective iron leaching can be performed using non-toxic complexing agents in order to design dual function materials (i.e., heterogeneous photocatalysis coupled to homogeneous Fentonbased processes) [10, 11]. To understand the dual function of such Fe-TNT nanomaterials, insights into the contribution of photocatalysis and Fenton-based processes is assessed using the present 1 mM Fe-TNT under solar-like radiation in the presence of H_2O_2 at pH = 3. Indeed, this Fe-TNT is an optimal sample to determine the contribution of each process (due to their relative weak contributions). A tentative assessment of the process contribution (among the 48% degradation extents) is about 16% photocatalysis along with activation of H₂O₂ by photogenerated e, 12% H₂O₂ photolysis, and 27% of Fenton-based processes. Therefore, the use of Fe-TNT is a promising nanomaterial that required further development for potential application in water treatments.

4. **Conclusion**

The Fe(III)-surface modified TiO₂ nanotube layers (Fe-TNT) were successfully prepared using electrochemical anodization technique and spin-coating method. The CAF degradation at $pH = 3$ under solar-like radiation by Fe-TNT is the most efficient in the presence of H2O² due to a strong contribution of Fenton-based processes. It is worth noting the Fenton-based reactions do not occur at the surface of the materials but in the solution since iron leaching is observed. Although it can be seen as a drawback due to the limited stability of Fe-TNT, it can open new research direction for designing photocatalysts as loading materials for iron to trigger Fenton-based processes. Indeed, at circumneutral pH, a selective iron leaching using non-toxic complexing agents can be performed, so dual function materials are formed (i.e. heterogeneous photocatalysis coupled to homogeneous Fenton-based processes). Therefore, the use of Fe-TNT layers as dual function nanomaterials (i.e. both photocatalytic and Fenton nanocatalyst) is promising for wastewater application.

Author Contributions: Conceptualization: O.M; Methodology: O.M., M.M., G.P.; Investigation: S.G, G.K.T., M.B.H., V.L., T.R., L.S.; Writing-original draft preparation: S.G., O.M.; Writing—review and editing: S.G., O.M.; Supervision: O.M.; Funding acquisition: S.G., O.M.; All authors have read and agreed to the published version of the manuscript.

Acknowledgement: This work was partially supported by the Scientific Grant Agency of the Ministry of Education, Science, Research and Sport of the Slovak republic (VEGA project No. 1/0062/22) and by the project USCCCORD (ZoNFP: NFP313020BUZ3) cofinanced by the European Regional Fund within the Operational Programme Integrated Infrastructure.

References

- 1. Ollis, D.F.; Pelizzetti, E.; and Serpone N. Photocatalyzed destruction of water contaminants. *Environ. Sci. Technol.* **1991,** 25, 1522- 9
- 2. Devipriya S and Yesodharan S Photocatalytic degradation of pesticide contaminants in water *Solar Energy Materials and Solar Cells* **2005.** 86, 309–48
- 3. Wilkinson, J.L.; Boxall. A.B.A.; Kolpin, D.W.; et al. Pharmaceutical pollution of the world's rivers. *Proceedings of the National Academy of Sciences* **2022** ,119, 2113947119
- 4. Yang, S.; Wang, P.; Yang, X.; Wei, G.; Zhang, W.; Shan, L. A novel advanced oxidation process to degrade organic pollutants in wastewater: Microwave-activated persulfate oxidation. *Journal of Environmental Sciences* 2009, 21, 1175-80
- 5. Rahimi-Nasrabadi, M.; Behpour, M.; Sobhani-Nasab, A.; Jeddy, M.R. Nanocrystalline Ce-doped copper ferrite: synthesis, characterization, and its photocatalyst application. *J Mater Sci: Mater Electron* **2016**, 27, 11691–7
- 6. Kanakaraju, D; Glass, B.D.; Oelgemöller, M. Advanced oxidation process-mediated removal of pharmaceuticals from water: A review. *Journal of Environmental Management* **2018**, 219, 189-207
- 7. Talwar, S.; Verma, A.K.; Sangal, V.K. Plug flow approaching novel reactor employing in-situ dual effect of photocatalysis and photo-Fenton for the degradation of metronidazole. *Chemical Engineering Journal* **2020,** 382, 122772
- 8. Zhang, Y., Zhou, J., Chen, X., Wang, L., Cai, W. Coupling of heterogeneous advanced oxidation processes and photocatalysis in efficient degradation of tetracycline hydrochloride by Fe-based MOFs: synergistic effect and degradation pathway. *Chemical Engineering Journal* **2019**, 369, 745-757.
- 9. Motola, M.; Čaplovičová, M.; Krbal, M.; Sopha, H.; Thirunavukkarasu, G.K.; Gregor, M.; Plesch, G.; Macak, J.M. Ti³⁺ doped anodic single-wall TiO² nanotubes as highly efficient photocatalyst. *Electrochimica Acta* **2020,** 331 135374
- 10. Huang, W.; Luo, M.; Wei, C.; Wang, Y.; Hanna, K.; Mailhot, G. Enhanced heterogeneous photo-Fenton process modified by magnetite and EDDS: BPA degradation. *Environmental Science and Pollution Research*, 2017, 24, 10421-10429.
- 11. Hou, X.; Huang, X.; Ai, Z.; Zhao, J.; Zhang, L. Ascorbic acid/Fe@Fe2O3: a highly efficient combined Fenton reagent to remove organic contaminants*. J Hazard Mater* **2016,** 310, 170-178