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Abstract 
 

Novel host-guest supramolecular copolymers have been prepared from a 

β-cyclodextrin (binded to ethylenediamintetraacetic acid, EDTA) dimer and a ditopic 

guest with two adamantyl groups bound to pyromellitic acid. Molecular weight and 

molecular size were determined from static and dynamic light scattering measurements 

(SLS and DLS, respectively). The analysis of results suggests that the supramolecular 

polymer adopts a shruck structure with an average molecular weight value of Mn = 

(1.51±0.02)×104 g·mol-1 (degree of polymerization equal to 5). 

 

Introduction 
 

Supramolecular polymers consist of arrays of low molecular weight molecules 

linked by noncovalent interactions.1 The most important feature is the inherent 

reversibility associated with intermolecular interactions. Therefore these polymers are in 

continuous equilibrium with their environment, and their properties, a priori, may be 

adjusted by external stimuli, providing new opportunities for designing tunable 

materials.2  

Ionic interactions,3 nucleobase pair interactions,4 interprotein heme heme pocket 

binding,5 metal coordination, hydrogen bonding,6,7 and host-guest interactions of crown 

ether/organic salt8 or cyclodextrin/hydrophobic molecule systems9-12 have been 

exploited for the polymerization.13 In particular, host-guest supramolecular polymers, 

some of which show very interesting potential applications, have been obtained by 

using the hosting properties of cyclodextrins.14-16 Polymers have been obtained either by 

mixing unimers carrying complementary units, i.e., host and guest sites,14,17 or 
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complementary monomers having two interacting host or guest moieties.15 With 

suitable guests these molecules give rise to very stable inclusion complexes that, when 

employed in the polymerization, should guarantee high polymerization degrees.18 

However, very often, small cyclic structures or chelate complexes seem to be formed 

which prevent the growth of large polymers.19,20 

Adamantyl derivatives form inclusion complexes with cyclodextrins, the 

interaction being highly favorable. This preference is due to a good fit of the adamantyl 

group inside the β-cyclodextrin (βCD) cavity.21 For this reason, supramolecular 

copolymers have been recently prepared by mixing different β-cyclodextrin and 

adamantyl dimers (Figure 1). Preliminary results on these systems seem to show that the 

polymerization degree strongly depends on the polymer flexibility, which determines 

the formation of closed structures, and stops the growth to small cyclic oligomers.22 In 

the light of this interest, in this work, we reported preparation and characterization of a 

new supramolecular copolymer. 
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Figure 1.- Structures of the precursors of the supramolecular polymer. (a) β-CD dimer 
derivative (βCD2EDTA). (b) Adamantyl dimer (Ad2), isomer mixture used on polymer 
generation. 

 

Experimental section 
 

Synthesis of βCD2EDTA: 6-NH2-β-CD (1.2 g, 1.06 mmol) and EDTA 

dianhydride (0.12 g, 0.47 mmol) were dissolved in dry DMF (10mL). Then 0.3 mL of 
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triethylamine were added and the mixture stirred at 50ºC for one day under argon 

atmosphere. H2O (~5 mL) was then added and the resultant mixture stirred 1 hour at r.t. 

After evaporation, the residue was taken up in H2O (~5 mL) and purified is a Sephadex 

C-25 column with water as eluent. Yield 85%. Rf = 0.17 (Ethyl acetate: 2-propanol: 

water: ammonia / 2: 3: 4: 0.3). RMN. 1H RMN (D2O, 500 MHz, δ/ppm): 5.13-5.04 (bs, 12H-

C(1), 2H-C(1’)); 4.04-3.76 (m, 12H-C(3), 12H-C(5), 24H-C(6), 2H-C(3’), 2H-C(6’), 2H-C(5’), 

4CH2COO, 4CH2CON); 3.72-3.64 (m, 12H-C(2), 2H-C(2’)); 3.63-3.50 (m, 12H-C(4), 2H-C(4’); 

3.44 (t, J=9.2, 2H-C(6’)); 3.22 (s, CH2CH2). 13C RMN; (D2O, 500 MHz, δ/ppm): 181.8 (COO); 

177.6 (CON); 104.6 (C(1), C(1’)); 85.8 C(4’); 83.9 C(4); 75.9 C(2); 75.6 C(2’); 74.8 C(3); 74.7 

C(3’); 74.6 C(5): 72.6 C(5’); 63.1 C(6); 61.1 (CH2COO); 60.9 (CH2CON); 55.5 (CH2CH2); 42.6 

C(6’). MALDI-TOF: Calculated = 2524,21g·mol-1; observed = 2544,82 ([M+Na]+). 

 

Synthesis of Ad2: 1-AdNH2. (2.3 g, 15.2 mmol) and Pyromellitic dianhydride 

(1.5 g, 6.9 mmol) were dissolved in dry DMF (25mL). Then 2 mL of triethylamine were 

added and the mixture stirred at r.t. for one day under argon atmosphere (at 10 minutes a 

precipitate was observed). H2O (~5 mL) was then added and the mixture stirred 1 hour 

at r.t. Finally, solid was filtered and washed with 2×10 mL of methanol to remove non 

reacted pyromellitic and then washed with water at pH=2 to remove 1-AdNH2 and to 

ensure carboxylic acid generation. Para- and meta- isomers were obtained at 10/90 ratio 

(see Figure 2). Yield 85%.  

 
Figure 2.- 1H spectrum of Ad2 in DMSO-d6. 300 MHz. 
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Figure 3.- MALDI-TOF of Ad2. 

 

SLS and DLS Measurements. A Brookhaven instrument constituted by a BI-

2030AT digital correlator with 136 channels, and a BI-200SM goniometer was used. 

The light source was a Uniphase solid-state laser system model 4601 operating at 532 

nm. The refractive index measurements were performed by an ATAGO differential 

refractometer model DD7. A description of the experiments and theory has been 

recently provided.23 In the SLS measurements, the q→0 limit of the excess Rayleigh 

ratio ∆Rθ values (∆R0) was analyzed by means of the equation 

appMR
cK 1

0

=
∆

 [1] 

where c, M, and Mapp are the solute concentration (g mL-1), the molecular weight, and 

the apparent molecular weight, respectively, and K is a constant that depends on the 

solvent refractive index, the solution refractive index increment (0.156 mL·g-1), and the 

laser wavelength. The measurements were performed in the range 30-150° of the 

scattering angle. A linear extrapolation as a function of q2 was performed whenever an 

angular dependence was observed. Otherwise, the ∆R90º was used. To prevent mold 

growing, these experiments were carried out in the presence of sodium azide (10 mg 

mL-1). 

 

Results and discussion 
 

TEM images and light scattering measurements demonstrate that Ad2 molecules 

self-assemble into big fibrillar aggregates (width value 19±7 nm) (Figure 4). This is in 

agreement with a previous report in which another adamantyl dimer was described as a 
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powerful surfactant with a great tendency to self-aggregation,15. However, in spite of 

the crosslinking of fibrillar aggregates by intermolecular interactions, the viscosity of 

the Ad2 solutions do not show any significative increment of the viscosity. DLS and 

SLS measurements (Figure 5 and 6) also evidence that the size of aggregates increases 

with time.  

 

  
(a) (b) 

Figura 4.- TEM images of (a) [Ad2] = 4.1 mM and, (b) [Ad2] = 8.0 mM in 50mM of sodium 

azide in H2O. 
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Figure 5.- CONTIN analysis Ad2 11.2 mM in NaN3 150mM at T=25,0±0,2 ºC. 
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Figure 6.- SLS kinetic study of Ad2 aggregation process in sodium azide 150mM at T=25,0±0,2 

ºC. [Ad2] = 11.2 mM. (-○-) θ=90º y (-○-) θ=40º. 
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When βCD is added to a solution of Ad2, the big aggregates are fully disrupted 

as results in Table 1 show. It is to say, light scattering measurements reveal that 

adamantyl complexation by cyclodextrin avoid Ad2 aggregation. For checking the 

validity of the experimental measurements, the molecular weight and the hydrodynamic 

diameter of βCD2EDTA were also measured. The obtained values (Mw = 2.3×103 g 

mol-1 and 1.3±0.6nm) are in good agreement with the molecular weight deduced from 

its formula (2.5×103 g mol-1) and the molecular size of βCD2EDTA (the height of one 

cyclodextrin cone is around 0.8 Å).24 

 

Tabla 1.- Light Scattering measurements of Ad2 and βCD mixutres at 25,0±0,2 ºC and 10 
mg·mL-1 of sodium azide. PMAd2=564,58 g·mol-1. PMβCD=1135 g·mol-1 

Ratio Concentration/10-3 M DLS SLS 
Ad2 βCD [Ad2] [βCD]  Rh / nm Map / 103g·mol-1 nag 

1 1 11.8 12.3 1.3 ± 0.4 2.0 ± 0.4 1.1 ± 0.3 
1 2 6.6 14.0 1.4 ± 0.4 2.9 ± 0.3 1.0 ± 0.1 
1 2 27.5 55.3 1.3 ± 0.3 2.7 ± 0.3 0.96 ± 0.12 

 

Table 2 shows the experimental results for aqueous solutions with identical 

concentrations of Ad2 and βCD2EDT. Even though we neglected the interparticle 

interaction, the results very clearly indicate the formation of a Ad2:βCD2EDTA polymer 

with a polymerization degree of about 5 (i. e., 5 monomer of each interacting species). 

This value does not show any concentration dependence, in agreement with data 

reported for polymers with similar flexibility.16 Furthermore, a good correlation 

between the hydrodynamic radius and the molecular weight is observed. 

 

Table 2.- Light Scattering measurements of Ad2 and βCD2EDTA mixtures at 25,0±0,2 ºC and 
10 mg·mL-1 of sodium azide. #Concentration of each reactant. PMβCD2EDTA =2518,17·g·mol-1, 
PMAd2=564,58 g·mol-1. 

[c]#/mM c/g·L-1 Rh/Å Map/104 g mol-1 
7.01 15.44 20.8 1.49 
10.01 30.91 21.2 1.51 
14.00 43.20 22.0 1.54 
18.03 55.67 21.7 1.52 
 

The average degree of polymerization, DP, in supramolecular polymers is 

dependent on the concentration of the solution and the association constant.8,18 Equation 

2 shows that polymers with a high molecular weight can only be obtained when the 

association constant is high. 
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By using a value of K= 6,1×105 M-1 for the Ad2/βCD2EDTA interaction,21 and the 

host concentration [H]o, Equation 2 is simplified to Equation 3  

2
1

0 )][( HKDP =  [3] 

From this equation, values of DP in the interval 65-105 should be expected. Thus, it 

seems that SLS data do not adequately represent the actual degree of polymerization. 

This is in agreement with SAXS measurements and Monte Carlo simulations performed 

by Galantini et al23 and their proposition of a shrunk conformation of the polymer in 

aqueous solution without the formation of stable cyclic structures, as proposed for other 

oligomers.25  

 

Conclusions 

 

The formation of polymer-like entities by adamantane and β-cyclodextrin dimers 

in aqueous solution was demonstrated by detailed light scattering experiments. Ad2 self-

aggregates in aqueous solution but the addition of β-cyclodextrin prevents the formation 

of such aggregates.  
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