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ABSTRACT 
 

The novel TOMOCOMD–CARDD approach has been introduced here for the 

classification and design of antifungal agents using computer-aided molecular design. For 

this purpose, no stochastic and stochastic atom-based quadratic fingerprinting were used 

to codify the antifungal-related chemical structure information from a comprehensive 

data set of 2478 organic compounds having a great structural variability, 1087 of them 

being antifungal agents covering the broadest antifungal mechanisms of action known so 

far. The two ligand-based antifungal-activity classification models obtained by using 

Linear Discriminant Analysis, including no stochastic and stochastic indices, classified 

correctly 90.73% and 92.47%, respectively, of 1772 chemicals in the training set. These 

models showed moderate-to-high Matthews correlation coefficients (MCC of 0.81 and 

0.85) as well as a very good accuracy, sensitivity, specificity and false alarm rate. These 

models were able of classifying correctly 92.16% and 87.56% of 706 compounds in an 

external test set. In general, the TOMOCOMD–CARDD models were best in predicting 

antifungal activity when compared with six of the most recent models reported so far; 

indicating that this approach could be very useful to identify (design and/or select) new 

antifungal agents against life-threatening fungal infections. 

 
 

Keywords: TOMOCOMD-CARDD Software; non-stochastic and stochastic atom-based 

quadratic indices; LDA-based QSAR model; Learning Machine Tools, Computational 

Screening, Antifungal Agent. 
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1. INTRODUCTION 

Over the past two decades the incidence of life-threatening fungal infections have 

increased and is directly related to the increasing patient populations at risk for the 

development of serious fungal infections, which includes those having major surgery, 

HIV infection, chemotherapy-induced neutropenia, solid-organ and hematopoietic stem 

cell transplantation, hemodialysis, advanced age, premature birth, and from the use of 

broad-spectrum antibiotics and glucocorticosteroids.1-5 

Serious infections are produced not only by the well known opportunists Candida 

albicans, Cryptococcus neoformans, and Aspergillus fumigatus but also by new and 

emerging fungal pathogens including species of Candida and Aspergillus other than C. 

albicans and A. fumigatus; opportunistic yeast like fungi such as Trichosporon spp., 

Rhodotorula spp., and Blastoschizomyces capitatus; hyaline molds such as Fusarium, 

Acremonium, Scedosporium, Paecilomyces, and Trichoderma species; zygomycetes such 

as Rhizopus spp., Absidia spp., and Rhizomucor spp.; and a wide variety of dematiaceous 

fungi.3, 6, 7 

The intrinsic resistance to even the very newest antifungal agents observed in 

some of these genera, along with the development of resistance during treatment in 

others, is becoming a major problem in the management of these diseases.2, 8, 9 

Furthermore, the clinical utility of the few classes of antifungal drugs on the market is 

limited by several shortcomings such as the lack of broad spectrum and fungicidal 

activity, unfavorable routes of administration, severe side effects and, undesirable drug-

drug interactions.10-12 To revert this situation, new effective antifungal agents need to be 

discovered in the next few years to come. 



Computer-aided drug design has emerged in the pharmaceutical world as an 

important tool for the “rational” search of chemicals with desired properties. Different 

studies related to the in silico design have been reported in the literature during the last 

years.13-19 In fact, many large pharmaceutical companies have reoriented their research 

strategies seeking to solve the problem of generation/selection of novel chemical entities 

(NCEs), one of the major bottlenecks in the drug discovery process. Currently most 

integration projects include efforts to integrate the data associated with NCE generation.20 

Alternatively, several approaches to the computer-aided molecular design and high-

throughput in silico screening (or virtual high-throughput screening) have been 

introduced in the literature.21 “Nevertheless, novel computational methods and strategies 

are required to deliver a system that significantly reduces the time-to-market and 

research and development (R&D) spending, and increase the rate at which NCEs 

progress through the pipeline. Such studies if they are implemented successfully can 

deliver substantial benefits and act as the bedrock for NCE selection”.20 

At present, there is an increasing interest on the development of rational approaches 

for antifungal drug discovery. In this sense, a very important role may be played by 

computer-aided drug design techniques based on quantitative-structure–activity-

relationship (QSAR) studies. Unfortunately, almost all antifungal QSAR studies reported 

so far are based on very limited databases considering only structurally related 

compounds with specific action modes or acting against a single fungus species.22-26 

Therefore, most of the previous QSAR studies can be considered as local models having 

a small to medium spectrum of chemical space with limited power to predict the 

activity/inactivity of different ligands to specific molecular targets. For instance, 



Gollapudy et al. 22 developed a 3D-model of the structure of Aspergillus fumigatus 

lanosterol 14-α demethylase (AF-CYP51A) using the crystal structure of Mycobacterium 

tuberculosis 14-α demethylase (PDB code:1EA1) as a template to investigate the 

interactions of azole antifungal with the enzyme(s) from fungi. Later, Gokhale and 

Kulkarni 23 performed a QSAR study on a series of 92 molecules using different 

physicochemical descriptors. In this report, inhibitors were divided into five classes 

depending on chemical structure and QSAR models were generated correlating the 

antifungal activity against Candida albicans by using the genetic function approximation 

(GFA) technique. Afterwards, the same research group examined a series of benzofuran 

antifungal in order to determine the structural requirements of N-myristoyltransferase 

(Nmt) enzyme inhibition by 3D-QSAR using comparative molecular field analysis 

(CoMFA) and comparative molecular similarity indices analysis (CoMSIA) methods as 

well as through docking studies where active and inactive molecules were docked into the 

active site of the Candida albicans Nmt (CaNmt) crystal structure to analyze enzyme–

inhibitor interactions. The final results obtained from 3D-QSAR and docking studies 

were found complementary. 

However, in the last few years, some in silico methods have been used to develop 

Global QSAR equations.27-30 Firstly, two different ligand-based classification models on 

antifungal activity were developed by a group in Valencia University, which gave rise to 

a good discrimination of this activity.28, 29 These models were used in virtual screening 

and four chemicals were in silico selected to be tested in the laboratory against C. 

albicans, C. glabrata and S. cerevisiae. All compounds, namely anethole, 2–methyl–4,5–

diphenyloxazole, 2–mercaptobenzoxazole and β–naphtyl caproate, showed activity 



against the three species with MIC50 ranging from 25 to 100 µg/mL. The main drawbacks 

of these equations are the trim down application-domain taken into account and the rather 

small diversity of chemical structural patterns contained in the data. Later, employed the 

same database, Li et al30 obtained three new classification models by using a set of 

molecular descriptors (including electronic descriptors, topological descriptors, geometric 

descriptors and molecular shape Indices) and support vector machine (SVM) 

classification method. Comparison of the results by SVM method and those by other 

statistical classification methods, for instance k-nearest neighbor (k-NN) and C4.5 

decision tree (that use the same pre-selected molecular descriptors) was also conducted. 

This study indicates the potential of SVM in facilitating the prediction of antifungal 

activity but the low spectrum of applicability of this model is the major advantage 

because it born form the same database that the previous counterpart analysis.28, 29 More 

recently, one of our research groups proposed a global unified QSAR approach to predict 

the antifungal activity against different species of fungi.27 The obtained model was 

trained using a data set composed by only 74 drugs tested in the literature against some of 

the fungi selected from a list of 87 species. The result was quite good representing the 

first unified model that allows predicting antifungal activity of organic compounds 

against a very large diversity of fungal pathogens; although the diversity of chemical 

structural patterns was low-to-medium considering the actual chemical space. 

As a result, researchers interested on predicting the antifungal activity for a given 

series of compounds need to use/develop as many QSAR equations as combinations of 

structurally heterogeneous families of compounds are necessary to be predicted. 

Therefore, the development of a single equation explaining the antifungal activity of 



structurally heterogeneous series of compounds covering as many as possible broad-

range of mechanism of action is of major interest. 

In this context, our research group has recently introduced a novel scheme known 

as TOMOCOMD (acronym of Topological MOlecular COMputer Design) able of 

generating 2D (topologic), 2.5 (3D-chiral) and 3D (topographic and geometric) molecular 

descriptors based on the application of the discrete mathematics and linear algebra theory 

to chemistry. In this sense, atomic, group and atom-type as well as total linear, quadratic 

and bilinear molecular indices have been defined in analogy to the linear, quadratic and 

bilinear mathematical maps.31-33 In first instance, this in silico method was successfully 

applied to the prediction of several physical, physicochemical and chemical properties of 

organic compounds31, 32, 34, 35 and subsequently to perform rational –in silico molecular 

design (or selection/identification of lead drug-like chemicals) and QSA(P)R 

[Quantitative Structure-Activity(Property) Relationship] studies in its –CARDD 

extension (TOMOCOMD-Computer Aided “ Rational” Drug Design) and to generate 

macromolecular fingerprintings in its –CANAR (TOMOCOMD- Computer-Aided 

Nucleic Acid Research)36, 37  and –CAMPS extensions (TOMOCOMD- Computer-Aided 

Modeling in Protein Science),38, 39 respectively. 

The CARDD extension of TOMOCOMD approach has been successful used to 

estimate the intestinal–epithelial transport of drugs,40, 41 to identify new tyrosinase 

inhibitors,42 but it has been mainly validated and proved useful in the virtual screening of 

novel tyrosinase inhibitors as well as anthelmintic, trypanosomicidal and trichomonacidal 

compounds, which were then synthesized and in vitro evaluated on mushroom tyrosinase 

enzyme, Fasciola hepatica, Trypanosoma cruzi and Trichomonas vaginalis,35, 43-47, as 



well as in the fast-track discovery of novel paramphistomicides, antibacterial and 

antimalarial compounds.15, 48-50 The predictive capacity of this ligand-based virtual 

screening methodology has remained high in all studies performed so far, which is an 

indication that TOMOCOMD-CARDD descriptors could become a powerful  in-silico 

tool for the discovery of new drug or lead compounds15, 35, 43-45, 48-50 

The main objectives of this paper are, first, to gather a large and structurally-

diverse antifungal data base for modeling the so far broadest mechanisms of antifungal 

action, and second, to develop highly predictive lineal classification models using the 

TOMOCOMD-CARDD approach and linear discriminant analysis. Finally, the results of 

the current study are compared with those obtained in previous works showing the 

robustness of antifungal models developed herein. 

 

2. MATERIALS AND METHODS 

2.1. Computational Methods. The CARDD module of the TOMOCOMD 

approach was used to draw all structures and to generate molecular descriptors.51 Briefly, 

the molecular pseudograph of each molecule was represented by the drawing mode of the 

CARDD module followed by the computation of the total and local (atom and atomtype), 

nonstochastic and stochastic quadratic indices of the kth “nonstochastic and stochastic 

graph–theoretical electronic-density matrices” Mk and Sk, correspondingly, using the 

calculation mode14, 31, 35, 40, 52 The kth atomtype quadratic indices were calculated by 

adding the kth atomic quadratic indices for all atoms of the same type in the molecule. In 

the atomtype quadratic indices formalism, each atom in the molecule is classified into an 

atomtype (fragment), such as heteroatoms, halogen atoms, aliphatic carbon chain, 



aromatic atoms (aromatic rings), and so on. The mathematical basis and methodological 

explanation of this approach have been reported elsewhere14, 31, 35, 40, 52 In this study, 

specifically we used the kth (k = 15) atomtype (heteroatoms: S, N, O) quadratic 

fingerprints not considering and considering H-atoms in the molecular pseudograph, 

correspondingly [qkL( x E) and qkL
H( x E)]. 

In this report, Pauling electronegativities53 were used as atomic weights (molecular 

vector’s components). Finally, linear discriminant analysis (LDA) was performed to find 

quantitative relationship between the antifungal activity and the TOMOCOMD-

CARDD’s generated quadratic fingerprintings. 

2.2. Data Set. Though antifungal compounds exhibit an enormous structural diversity 

and action modes, only a small proportion of that diversity has been seriously explored 

for its pharmacological potential so far, and there is therefore little reason to believe that 

this potential has now run dry. For this reason, a large database to facilitate the 

application of cheminformatics and molecular modelling to antifungal activity prediction 

has been constructed. Consequently, a data set of 2142 organic chemicals having a great 

structural variability - 1087 of them being antifungal agents10, 23, 28, 54-112 covering the 

broadest antifungal mechanisms of actions known so far and the rest inactive ones (1055 

compounds having other clinical uses, such as antivirals, sedative/hypnotics, diuretics, 

anticonvulsivants, hemostatics, oral hypoglycemics, antihypertensives, antihelminthics, 

anticancer compounds, and so on) - was selected.113  

The data set of antifungal agents (active compounds) was chosen considering the 

largest representation of the so far known action modes; i.e., compounds interfering with 

cell wall synthesis (chitin synthesis inhibitors such as polyoxins and nikkomycins and, ß-



1,3 glucan synthesis inhibitors such as echinocandins), agents interfering with membrane 

sterols (polyenes, azoles, allylamines and morpholines), protein (sordarins) and DNA 

synthesis inhibitors (flucytosine and pentamidine analogs) as well as inhibitors of N-

myristoyltransferase.114 Several compounds reported as antifungals but having no known 

mechanism of action were also included.  

2.3 Chemometric method. Linear discriminant analysis (LDA) was performed as 

implemented in the STATISTICA 6.0 for Windows package, using the forward stepwise 

procedure as a strategy for variable selection.115 In this way, quantitative models with the 

following form were obtained: 

P = a0q0( x ) + a1q1( x ) + … + anqn( x ) + an+1q0L( x ) + an+2q1L( x ) + …+ amqmL( x )    (1) 

where P is the biological property (in this study P was designated as AFA, acronym of 

Anti-Fugal Activity), qn( x ), the nth total quadratic index, qmL( x ), the mth local quadratic 

index and an′s and am′s, the coefficients obtained by LDA (here, kth = nth or mth). The 

principle of parsimony (Occam’s razor) was taken into consideration as a strategy for 

model selection. Accordingly, we selected models having the highest statistical 

significance but as few parameters as possible. 

The quality of the models was determined by examining Wilks’ λ parameter (U 

statistic), which can take values ranging from 0 (perfect discrimination) to 1 (no 

discrimination), the square Mahalanobis distance (D2), which indicates the separation 

between active and inactive groups, the Fisher ratio (F) and its corresponding p level 

[p(F)]. Finally, the calculation of percentages of global good classification (accuracy), 

sensibility, specificity (also known as ‘‘hit rate’’), false positive rate (also known as 



‘‘false alarm rate’’), and Matthews correlation coefficient (C) in the training and test sets 

were also used to assess the models.116 

The Randić methodology for orthogonalization of descriptors was followed to avoid 

the exclusion of descriptors on the basis of its colinearity with other variables included in 

the model.117-121 As a first step, an appropriate order of orthogonalization was considered 

following the order with which the variables were selected in the forward stepwise search 

procedure of the statistical analysis. The first variable (V1) is taken as the first orthogonal 

descriptor 1O(V1), and the second one (V2) is orthogonalized with respect to it [2O(V2)]. 

The residual of its correlation with 1O(V1) is that part of the descriptors V2 not reproduced 

by 1O(V1). Similarly, from the regression of V3 versus 1O(V1), the residual is the part of V3 

that is not reproduced by 1O(V1), and it is labeled 1O(V3). The orthogonal descriptor 

3O(V3) is obtained by repeating this process in order to also make it orthogonal to 2O(V2). 

The process is continually repeated until all variables are completely orthogonalized, and 

the orthogonal variables are then used to obtain the new model. 

 

3. RESULTS AND DISCUSSION 

3.1 Development of lineal discriminant functions. When compared with other 

areas of pharmaceutical research, the screening of organic compounds in order to in silico 

identify new antifungal leads has suffered from a lack of data in an appropriate format. 

Particularly, the electronic information on chemical structure is found to be insufficient. 

While such information can serve a wide variety of purposes, it is perhaps in the field of 

virtual screening where it may have its greatest impact. For this reason, the first step of 

our study was to use a dataset having a molecular diversity as wide as possible in order to 



search for good LDA-based QSAR models. To fulfill this requirement we have selected a 

data set of 2142 compounds, 1087 of them being antifungal agents covering all known as 

well as some unknown antifungal mechanisms of actions and, the rest 1055 chemicals 

having a series of other pharmacological uses. These compounds were randomly split into 

a training set containing 717 antifungal and 119 inactive compounds and a test set 

including 370 antifungal and 336 inactive compounds, respectively. 

TOMOCOMD-generated data was used to derive discriminant functions able of 

classifying compounds as antifungal-like (positive) or no antifungal-like (negative) 

through LDA, using non-stochastic and stochastic atomtype quadratic indices as 

independent variables14, 31, 35, 40, 52 For this purpose, the forward stepwise procedure of the 

statistic package STATISTICA115 was fixed as a strategy for variable selection. The best 

discrimination functions obtained with nonstochastic and stochastic quadratic indices for 

the training set are given below, respectively: 

 
AFA = -5.01 +5.94x10-4q5( x ) -1.24x10-4q6( x ) -0.02q1L

H( x E) -1.59x10-7q12L( x E-H)   (2) 

N(Training) = 1436 λ = 0.41 D2 = 5.69   F(4,1431) = 509.72  Rcan = 0.766  χ2 = 1268.38  

p<0.0001 

 
AFA = -4.44 +0.20sq11( x ) +0.50sq8L

H( x E) -0.08sq0
H( x ) -0.62sq6L

H( x E)                     (3)   

N(Training) = 1436  λ = 0.39  D2 = 6.07  F(4,1431) = 544.51  Rcan = 0.777  χ2 = 1324.69  

p<0.0001 

 
where, AFA refers to Antifungal Activity, N is the number of compounds, λ is Wilk’s 

lambda, D2 is the squared Mahalanobis distance, F is the Fisher ratio, p-value is the 



significance level and Rcan and χ2 are the correlation coefficient and chi-squared 

parameter of canonical LDA analysis, respectively.   

While Eq. 2 classified correctly 90.73 % of the compounds in the training set, 

misclassifying only 164 chemicals out of a total of 1772, Eq. 3 classified correctly 

92.47% of compounds, misclassifying only 133 chemicals. As it can be appreciated from 

Table 1, stochastic quadratic indices were best in predicting the antifungal activity than 

nonstochastic quadratic indices in the training set not only because of their better 

accuracy and Mathew’s correlation coefficient but also due to their higher sensitivity, 

specificity and lower false positive rate. In general terms, however, both models were 

good to describe the antifungal activity of chemical compounds. The classification from 

Eqs. 2 and 3 of all active and inactive training compounds appears in Table SD1 and 

SD2, respectively, as Supplementary Data.  

Table 1 comes about here (see end the document) 

Results obtained from the training set provide some clues on the power of the 

developed models. However, their real power and final aim resides in the ability of 

predicting the biological properties of new compounds. Therefore, the use of a test set is 

essential to assess such a predictive power.122, 123 For this purpose, a study aimed to test 

the predictive capacity of the two obtained discriminant functions was carried out with an 

external test set. In this case, (Eq. 2) correctly classified 92.16% (274/282) of the active 

compounds and 91.96% (141/160) of the inactives, whereas (Eq. 3) correctly classified 

87.56% (270/282) of the actives and 91.96% (143/160) of the inactive ones, for an overall 

accuracy of 92.06% (27/442) and 89.66% (29/442), respectively (for more details, see 

also Table 1). Contrary to what was observed in the training set, nonstochastic quadratic 



indices were slightly superior in predicting the antifungal activity in the test set. 

Nonetheless, the predictive power of both models was really good with a relatively low 

number of misclassified compounds. This is a highly desirable property because the 

lower the number of misclassified inactive compounds, the less the waste of time and 

resources by sending inactive chemicals to biological tests;18 similarly, the lower the 

number of misclassified active compounds, the less the chance of losing a potential drug 

candidate. The classification from Eqs. 2 and 3 of all active and inactive test compounds 

appears in Table SD3 and SD4, respectively, as Supplementary Data. 

3.2 Orthogonalization of Descriptors. In the orthogonalization process, molecular 

descriptors are transformed in such a way that they do not mutually correlate to each 

other. In this philosophy, developed by Randić several years ago, the exclusion of 

descriptors based on their colinearity with other variables previously included in the 

model is avoided as a way to improve the statistical interpretation of the models by using 

interrelated indices.117-121 Both, the nonorthogonal descriptors and the derived orthogonal 

descriptors contain the same information. Therefore, the same statistical parameters of the 

QSAR models are obtained.117-121 It is known that the interrelation among different 

descriptors can result in highly unstable regression coefficients, which makes it almost 

impossible to know the relative importance of an index included in a model. In other 

cases, however, strongly interrelated descriptors can enhance the quality of a model 

because the small fraction of a descriptor that is not reproduced by its strongly 

interrelated pair can provide positive contributions to the model. Furthermore, the 

coefficient of the QSAR model based on orthogonal descriptors is stable to the inclusion 



of novel descriptors, facilitating the interpretation of the regression coefficients and the 

evaluation of the role of individual fingerprints in the QSAR model. 

The results of the orthogonalization of molecular descriptors included in both 

models are shown in Table 2. Eq.s 2a and 3a represents the final models with the 

orthogonalized molecular indices whereas in the symbolization mO[qk( x )], the 

superscript m expresses the order of importance of the variable [qk( x )] after a 

preliminary forward stepwise analysis and O means orthogonal (see Table 2). As it can be 

appreciated, there is a total coincidence in all statistical parameters between orthogonal 

descriptor-based models and linear descriptors-based models (i.e., the statistical 

coefficients of LDA-QSARs λ, D2, F, C, accuracy (Qtotal) are the same whether a set of 

non-orthogonal descriptors or the corresponding set of orthogonal indices is used). 

Table 2 comes about here (see end the document) 

This fact facilitates the interpretation of the coefficients in the LDA-QSAR 

equations. In this sense, mO(qk( x )) may be classified according to the distance k into 

short- (0-5), mid- (6-10), and long-range non-stochastic and stochastic quadratic indices. 

The information given in Table 2 clearly shows that all three short- middle- and long-

range total and atom-type (heteroatoms and H-atoms bonding to heteroatoms) quadratic 

indices had a contribution to the antifungal activity, and local quadratic indices had the 

best variable combinations capable of describing such activity of compounds included in 

the training and test set. Nevertheless, total variables such as those of zero order were 

included in the models, indicating that the size and atom composition in a molecule are 

important for its activity. The high contribution of local variables can be explained by the 

fact that the mechanisms of action of antifungal drugs are direct and specific; therefore, 



weak non-covalent interactions propitiated by heteroatoms’ electronic distribution are 

very important for their interaction with receptors. However, the inclusion of local 

variables of superior order in both models demonstrates that an adequate molecular 

environment is also required for the interaction of antifungal drugs with their 

pharmacological target.  

3.3 Comparison with other approaches for antifungal activity. In the last few 

years, some in silico methods have been used to develop ligand-based classification 

models on antifungal activity, which gave rise to a good discrimination of this activity.28-

30 However, an exhaustive comparison between these models and the models developed 

herein is not possible because of the differences in the experimental data used. Therefore, 

the comparison will be based on the number and diversity of chemical structural patterns 

contained in the data as well as on some classification and statistical parameters. Table 3 

shows the comparison between antifungal models developed through TOMOCOMD–

CARDD method and other reported approaches. 

Firstly, the data set used to develop TOMOCOMD–CARDD based models have 

more than 26 and 22 times the number of antifungal agents with respect to models 

reported by Pastor et al28 (Table 3, model 4 and 5) and Garcia-Domenech et al29 (Table 3, 

model 6 as well as models 7-9 developed by Li et al30), respectively. Besides, the models 

developed by these authors cover a short range of mechanism of action compared with 

the broad range covered by our models. 

Table 3 comes about here (see end the document) 

Except for the training set of the model developed by Garcia-Domenech (Table 3, 

model 6) with a global good classification of 96.92%, TOMOCOMD–CARDD models 



had a higher accuracy than all of the reported LDA equations both in the training and 

validation sets. This is remarkable taking into account the great structural diversity coded 

by TOMOCOMD–CARDD method. 

 
4. CONCLUDING REMARKS AND FUTURE OUTLOOKS 

In the last two decades the number of patients with severe fungal infections has 

dramatically increased and concern regarding the development of resistance to any of the 

few antifungal drugs available has developed.124 On the other hand, the choice of suitable 

antifungal agents remains relatively limited due to their modest efficacy against life-

threatening systemic fungal infections.125 Despite aggressive management, the prognosis 

of invasive fungal disease, in particular those caused by filamentous fungi, continues to 

be dismal, with mortality rates exceeding 80% in selected categories of patients.126 

Although the need for new drugs is clear, progress in that area is slow and 

unpredictable. It is stated that the ideal antifungal agent of the future should have a broad 

spectrum of fungicidal activity without mechanism-based host toxicity.127 On the other 

hand, it takes around 13 years to bring a new antimicrobial to market128 with an estimated 

cost of more than 800 million €.129 This trend, which is similar to other therapeutic areas, 

has prompted different strategies within pharmaceutical companies and academic 

institutions to  reduce the hit-to-drug timeline, increase the number of quality candidate 

drugs that make the transition from discovery to clinical development, and decrease the 

attrition rate (currently 90%) of candidate drugs in the clinical stages of the value 

chain.130 

In this sense, the antifungal models developed in the present work are very valuable 

to design new agents able of fulfilling the above criteria. The fact that these models cover 



a great structural diversity and known- and unknown-mechanism of actions coupled with 

their high accuracy, sensitivity and specificity to predict the antifungal activity is a step 

forward in the drug discovery process to any scientist wishing to develop new antifungals 

not only structurally related to known compounds but to generate new antifungal leads as 

well. 

 

Supplementary Material Available: The complete list of compounds used in training 

and prediction sets, as well as their structures, posterior classification and scores 

according to LDA-based QSAR models is available free of charge via Internet at… 
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 ANNEXES 
(Tables, Figures and Schemes to be Inserted in the Main Text) 

 
Table 1. Results of the Training and Prediction Series Performances using the Atom-

based Quadratic Indices. 
 Matthew´s corr. 

coefficient. 
Accuracy ‘QTotal’

(%) 
Sensitivity

(%) 
Specificity

(%) 
False positive rate 

‘‘false alarm rate’’ (%)
Non-stochastic descriptors (Eq. 2) 
Training Set 0.81 90.73 91.07 90.44 9.59 
Test Set 0.84 92.06 92.16 92.66 8.03 
Stochastic descriptors (Eq. 3) 
Training Set 0.85 92.47 91.21 93.56 6.25 
Test Set 0.79 89.66 87.56 92.30 8.03 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table 2. Results of Randić’s Orthogonalization Analysis. 
    Non-orthogonal Quadratic Indices   

q5( x ) q6( x ) q1L
H( x E) q12L( x E-H) sq11( x ) sq8L

H( x E) sq0
H( x ) sq6L

H( x E) 
1.00 0.99 0.61 0.54 1.00 0.90 0.99 0.90 

 1.00 0.55 0.54  1.00 0.87 0.99 
  1.00 0.56   1.00 0.87 
   1.00    1.00 

  Orthogonal Quadratic Indices   
O(q5(x)) O(q6(x)) O(q1L

H(xE)) O(q12L(xE-H)) 1O(sq11(x)) 2O(sq8L
H(xE)) 3O(sq0

H(x)) 4O(sq6L
H(xE)) 

1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 
 1.00 0.00 0.00  1.00 0.00 0.00 
  1.00 0.00   1.00 0.00 
   1.00    1.00 
LDA based QSAR models derived from the orthogonal non-stochastic and stochastic quadratic indices 

 
AFA = -0.004 +3.241O(q5( x )) -1.472O(q12L( x E-H))  
             -10.813O(q1L

H( x E)) -1.0014O(q6( x x))(Eq. 2a) 
 
N = 1436   λ = 0.41   D2 = 5.69   F(4, 1431) = 509.72   
Rcan = 0.766   χ2 = 1268.38   C = 0.81   QTotal = 90.73 
   

 
AFA = -0.007 +2.381O(sq11( x )) -4.672O(sq8L

H( x E))  
            -17.563O(sq0

H( x )) -37.04O(sq6L
H( x E)) (Eq. 3a)  

 
N = 1436   λ = 0.39   D2 = 6.07   F(4, 1431) = 544.51   
Rcan = 0.777    χ2 = 1324.69   C = 0.85   QTotal = 92.47  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table 3. Comparison between the models developed in this study with other cheminformatic approaches. 1 
Classification models of the antifungal activity Models’ features to 

be compareda Eq. 2 (LDA) Eq. 3 (LDA) Eq. 4 (LDA) Eq. 5 (LDA) Eq. 6 (LDA) Eq. 7 (SVM) Eq. 8 (k-NN) Eq. 9 (C4.5) 
N total 2142 2142 94 94 90 94 94 94 
N antifungals 1087 1087 42 42 49 42 42 42 
Wilks’λ  0.41 0.39 0.392 0.387 0.32 - - - 
F 509.72 544.51 14.5 19.5 17.2 - - - 
D2 5.69 6.07 - - - - - - 
p-level <0.0001 <0.0001 - - - - - - 
χ2 1268.38 1324.69 - - - - - - 
Rcan 0.766 0.777 - - - - - - 
Variables in the model 4 4 9 9 8 60(30)* 30* 30* 

Learning set 
N total 1436 1436 94 94 65 94** 94** 94** 

N antifungals 717 717 42 42 36 42** 42** 42** 

  Matthews Corr. 
  Coefficient (C) 

0.81 0.85 0.74 0.77 0.94    

  Accuracy ‘QTotal’ 90.73 92.47 87.23 88.29 96.92 84.0(89.4)** 76.5** 75.6** 
  Specificity (%) 90.44 93.56 87.50 91.89 97.22 - - - 
  Sensitivity  (%) 91.07 91.21 83.33 80.95 97.22 91.0(97.1) ** 71.7 73.5 

False + Rate (%) 9.56 6.25 9.62 5.76 3.44 - - - 
Families of drugsb  Broad range Broad range Short range Short range Short range Short range Short range Short range 

Validation methods 
Validation methodc i i ii ii i iii iii iii 
N total 706 706 - - 25 - - - 
N antifungals 370 370 - - 13 - - - 

  Matthews Corr. 
  Coefficient (C) 

0.84 0.79 0.71 0.75 0.60 - - - 

  Accuracy ‘QTotal’ 92.06 89.66 85.56 87.80 80.00 77.8 75.0 85.7 
  Specificity (%) 92.66 92.30 85.71 88.57 83.33 - - - 
  Sensitivity  (%) 92.16 87.56 85.71 83.78 76.92 - - - 

False + Rate (%) 8.03 8.03 14.58 8.88 16.66 - - - 
Families of drugsb  Broad range Broad range Short range Short range Short range Short range Short range Short range 
*Equation fited employed the whle set of 62 variables, between braket number of predictors selected by using Genetic algorithm after develop SVM.30 **Result 2 
obtained form cross-validation experiment by using 5-fold out. aEquations 2 and 3 are reported in this work, the models 4 and 5 were reported by Pastor et al.,28 3 



equation 6 was reported by Garcia-Domenech et al.29 and models 7-9 were reported by Li et al.30 bOnly were taken into account compound families with a wide 4 
representative’s cValidation methods are: i) external prediction series, and ii) leave-20%-out, iii) an independent test set. 5 
 6 




