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Abstract: This study employed machine learning algorithms to identify lead compounds that inhibit 11 
the antibiotic targets, DNA gyrase and Dihydrofolate reductase in Escherichia coli, and identified 12 
new, multifaceted antimicrobial compounds. This study used three separate datasets: 1) 326 Esche- 13 
richia coli DNA gyrase inhibitors and 132 non-inhibitors, 2) 346 Escherichia coli Dihydrofolate re- 14 
ductase inhibitors and 176 non-inhibitors, and 3) 18387 non-specific drug-like chemicals. All da- 15 
tasets were then processed using ECFP-4 fingerprints and split into train, test, and validation da- 16 
tasets according to a 70-15-15 train-test-validation split. We explored the potential of six different 17 
classification algorithms, all optimized with Bayesian optimization. Our results indicate that the 18 
Gradient Boosting Classifier (GBC) performed the best at identifying a compound's efficacy towards 19 
DNA gyrase with an accuracy, precision, recall, F1-score, and AUC of 0.91, 0.92, 0.86, 0.88, and 0.933, 20 
respectively. The Random Forest Classifier (RFC) performed optimally for identifying a com- 21 
pound’s effectiveness towards Dihydrofolate reductase with an accuracy, precision, recall, F1-score, 22 
and AUC of 0.86, 0.83, 0.85, 0.84, and 0.944, respectively. As a result, the GBC and RFC were used 23 
to search for compounds that inhibited both DNA gyrase and Dihydrofolate reductase. Out of 18387 24 
compounds, we identified 5 novel compounds that have a predicted probability greater than 95% 25 
to inhibit both DNA gyrase and Dihydrofolate reductase, suggesting a high antimicrobial potential. 26 
The models evaluated in this study, particularly the GBC and RFC models, hold tremendous prom- 27 
ise in computationally screening large libraries of compounds for antimicrobial potential. 28 
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 30 

1. Introduction 31 

1.1. Background on Antibiotics and Antibiotic Resistance 32 

Amidst the recent explosion of antibiotic use in both humans and agriculture, antibiotic 33 
resistance in bacterial strains has begun to spike. This has led to the advent of “super- 34 
bugs”, bacteria that have developed resistance to multiple antibiotics [1]. As a result, 35 
there have been numerous research efforts in recent years aiming to identify new antibi- 36 
otics. 37 

1.2. Recent Advances in Computational Drug Discovery: Applications to Antimicrobial 38 
Compounds 39 

Recent advances in machine learning and computational biology have demonstrated the 40 
potential to accelerate computational drug discovery by filtering the chemical space for 41 
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target molecules [2,3]. Previous researchers have demonstrated the efficacy of random 1 
forest classification models when predicting for life-extending chemicals [4]. 2 
Furthermore, most recently, researchers have demonstrated the potential of deep 3 
learning models particularly in identifying novel antibiotics that are successful in vivo 4 
against a wide range of bacterial infections, indicating the potential for computational 5 
methods to revolutionize antibiotic bacteria [5]. 6 

1.3. DNA gyrase and Dihydrofolate reductase as Antimicrobial Targets 7 

Many current antimicrobial compounds operate by inhibiting the function of key 8 
proteins that are vital to bacterial function [6]. This study focused on two such proteins 9 
proposed by prior literature as antimicrobial targets, DNA gyrase and Dihydrofolate 10 
reductase. DNA gyrase functions as topoisomerase in bacteria that aids in the process of 11 
ATP-dependent negative supercoiling of DNA in bacteria [7]. Previous successful 12 
antibiotic classes like Coumarins and Quinolones have modulated the function of DNA 13 
gyrase, leading to antimicrobial function via the breakdown of bacterial function [8]. 14 
Similarly, Dihydrofolate reductase has also been a popular target for antimicrobial 15 
agents due to its crucial role in nucleotide synthesis [9]. 16 

1.4. Purpose 17 

In an effort to speed up antibiotic discovery, this study demonstrated the promise of 18 
machine learning classification models in multifaceted antimicrobial compound 19 
screening and identification.  20 

2. Materials and Methods 21 

2.1. Datasets and Dataset Preprocessing 22 

The breakdown of the three datasets used in this research are displayed in Table 1. The 23 
datasets consisting of Escherichia coli DNA gyrase and Dihydrofolate reductase inhibitors 24 
were sourced from ChEMBL [10]. The dataset consisting of 18387 non-specific drug-like 25 
chemicals was sourced from Zinc 15. [11] 26 

Table 1. Dataset Breakdown. 27 

Data Type  DNA Gyrase Dihydrofolate reductase Unspecific 

Inhibitor 326 346 0 

Non-inhibitor 132 176 0 

Unspecific 0 0 18387 

All compounds in datasets were characterized using ECFP-4 fingerprints. All datasets 28 
were then split into train, test, and validation datasets according to a 70-15-15 train-test- 29 
validation split. 30 

2.2. Machine Learning Models 31 

This study employed six classification models in total, logistic regressions (LR), support 32 
vector machines (SVM), random forests (RFC), k-nearest neighbors (K-NN), AdaBoost 33 
(ADA), and Gradient Boosting (GBC). All models were evaluated using accuracy, 34 
prevision, recall, F1-score, and area under curve (AUC). 35 

2.3. Bayesian Optimization 36 
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This study also implemented Bayesian optimization in order to optimize all six 1 
classification models. For each of the classification algorithms, bayesian optimization 2 
was run to optimize the parameters. The models were optimized using the validation 3 
dataset in order to minimize overfitting when evaluating model metrics with the test 4 
dataset. 5 

3. Results 6 

3.1. Machine Learning Model Evaluation 7 

3.1.1 DNA gyrase Machine Learning Model Evaluation 8 

All six optimized machine learning models were trained on DNA gyrase inhibitors and 9 
evaluated using accuracy, prevision, recall, F1-score, and AUC. The gradient boosting al- 10 
gorithm performed the best with an accuracy, precision, recall, F1-score, and AUC of 0.91, 11 
0.92, 0.86, 0.88, and 0.933, respectively (Table 2, Figure 1, Figure 2).  12 

Table 2. DNA gyrase Machine Learning Model Accuracy Metrics. 13 

Model Accuracy Precision Recall F1-Score AUC 

Logistic Regression 0.88 0.88 0.82 0.84 0.919 

Support Vector Machine 0.86 0.92 0.74 0.78 0.921 

Random Forest 0.87 0.92 0.76 0.80 0.898 

K-Nearest Neighbor 0.78 0.74 0.67 0.69 0.754 

AdaBoost 0.83 0.79 0.75 0.77 0.920 

Gradient Boosting 0.91 0.92 0.86 0.88 0.933 

 14 

Figure 1. DNA gyrase Machine Learning Model Confusion Matrices. 15 
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 1 

Figure 2. DNA gyrase Machine Learning Model receiver operating characteristic (ROC) curves. 2 

 3 

3.1.2 Dihydrofolate reductase Machine Learning Model Evaluation 4 

All six optimized machine learning models were trained on Dihydrofolate reductase in- 5 
hibitors and evaluated using accuracy, prevision, recall, F1-score, and AUC. The random 6 
forest algorithm performed the best with an accuracy, precision, recall, F1-score, and AUC 7 
of 0.91, 0.92, 0.86, 0.88, and 0.933, respectively (Table 3, Figure 3, Figure 4).  8 

Table 3. Dihydrofolate reductase Machine Learning Model Accuracy Metrics. 9 

Model Accuracy Precision Recall F1-Score AUC 

Logistic Regression 0.85 0.82 0.82 0.82 0.949 

Support Vector Machine 0.85 0.81 0.83 0.82 0.929 

Random Forest 0.86 0.83 0.85 0.84 0.944 

K-Nearest Neighbor 0.83 0.81 0.86 0.82 0.926 

AdaBoost 0.82 0.78 0.80 0.79 0.866 

Gradient Boosting 0.85 0.82 0.82 0.82 0.889 

 10 

 11 

Figure 3. Dihydrofolate reductase Machine Learning Model Confusion Matrices. 12 
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Figure 4. Dihydrofolate reductase Machine Learning Model ROC curves. 2 

3.2. Identification and Analysis of Novel Antimicrobial Ligands 3 

By implementing the best performing model for identifying DNA gyrase inhibitors (gra- 4 
dient boosting) and the best performing model for identifying Dihydrofolate reductase 5 
(random forest), this study used each model to identify novel compounds that are pre- 6 
dicted to inhibit both DNA gyrase and Dihydrofolate reductase. Using both models, five 7 
compounds were identifed that had an average predicted probability greater than 0.97. 8 
The best performing compound is, 9 
CN(Cc1cnc2nc(N)nc(N)c2n1)c1ccc(C(=O)N[C@@H](CCC(=O)NO)C(=O)O)cc1, with a pre- 10 
dicted probability of 0.9988515310206159 to inhibit DNA gyrase, a predicted probability 11 
of 0.9897304236200257 to inhibit Dihydrofolate reductase, and an averaged predicted 12 
probability of 0.9942909773203208. 13 

Table 4. Novel Antimicrobial Compounds and Probabilistic Analyses. 14 

Compound Formulas 

and ZINC IDs 
Predicted Probability: DNA Gyrase 

Predicted Probability: 

Dihydrofolate reductase 

Predicted Probability: Di-

hydrofolate reductase 

 

C20H23N9O5 

(ZINC27637231) 

 

0.9988515310206159  0.9897304236200257 0.9942909773203208 

C25H29N9O8 

(ZINC5385827) 

 

0.9910340430619817 

 

0.9974326059050064 

 

0. 994233324483494 

 

C25H29N9O8 

(ZINC4772545) 

 

0.9995824679977368 

 

0.9858793324775353 

 

0.9927309002376361 

 

C24H27N9O8 

(ZINC5372693) 

 

0.9908400010423145 

 

0.9691912708600771 

 

0.9800156359511958 

 

C25H30N10O6 

(ZINC28713649) 

         0.9993063830032061 

 

0.959349593495935 

 

0.9793279882495705 

 

    

4. Discussion 15 

Of the six models trained on DNA gyrase, gradient boosting was the most accurate and 16 
had the highest F1-score. Unlike the some of the other algorithms, the Bayesian optimiza- 17 
tion of gradient boosting models drastically changes the model performance and metrics 18 
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(i.e., number of trees, learning rate, and maximum depth), greatly enhancing its perfor- 1 
mance. The use of gradient boosting is further enhanced as the DNA gyrase dataset con- 2 
sists of few outliers and overall computation time was not a major constraint [12].  3 

For the Dihydrofolate reductase models, the random forest model nominally outper- 4 
formed other models. With the optimal models from both DNA gyrase and Dihydrofolate 5 
reductase, the compounds identified had a probability of 0.97 to inhibit both DNA gyrase 6 
and Dihydrofolate reductase.  7 

Since the precision in both models are either similar or higher than respective recall met- 8 
rics, the false positivity rate will be comparable to the accuracy metrics of the models, 9 
ensuring that the chosen compounds maintain a high probability of being effective. 10 

5. Conclusions 11 

This study evaluated the efficacy of machine learning models at identifying novel antimi- 12 
crobial compounds. The machine learning models evaluated in this study, particularly 13 
the gradient boosting and random forest models, performed very well and hold tremen- 14 
dous potential in computationally screening large libraries of compounds for antimicro- 15 
bial potential. Furthermore, the compounds identified in this study hold promise as po- 16 
tential, novel antimicrobial compounds. Future investigations should explore alternative 17 
classification approaches to antimicrobial compound screening. The compounds identi- 18 
fied in this study should also be researched further in vivo to identify additional antimi- 19 
crobial potential. 20 

Author Contributions: Conceptualization, J.S. and D.V.; methodology, J.S. and D.V.; software, J.S. 21 
and D.V.; validation, J.S. and D.V.; formal analysis, J.S.; investigation, J.S.; resources, J.S.; data cura- 22 
tion, J.S.; writing—original draft preparation, J.S. and D.V.; writing—review and editing, J.S. and 23 
D.V.; visualization, J.S.; supervision, J.S.; project administration, J.S. 24 

Funding:  25 

Institutional Review Board Statement:  26 

Informed Consent Statement:  27 

Data Availability Statement: Please refer to suggested Data Availability Statements in section 28 
“MDPI Research Data Policies” at https://www.mdpi.com/ethics. 29 

Acknowledgments: The authors would like the acknowledge their friends, families, and mentors 30 
for their endless support. 31 

Conflicts of Interest: The authors declare no conflict of interest. 32 

References 33 
1. Ventola C. L. (2015). The antibiotic resistance crisis: part 1: causes and threats. P & T : a peer-reviewed journal for formulary man- 34 

agement, 40(4), 277–283. 35 
2. Vamathevan, J., Clark, D., Czodrowski, P., Dunham, I., Ferran, E., Lee, G., Li, B., Madabhushi, A., Shah, P., Spitzer, M., & Zhao, 36 

S. (2019). Applications of machine learning in drug discovery and development. Nature reviews. Drug discovery, 18(6), 463–477. 37 
https://doi.org/10.1038/s41573-019-0024-5 38 

3. Dara, S., Dhamercherla, S., Jadav, S. S., Babu, C. M., & Ahsan, M. J. (2022). Machine Learning in Drug Discovery: A Review. Ar- 39 
tificial intelligence review, 55(3), 1947–1999. https://doi.org/10.1007/s10462-021-10058-4 40 

4. Kapsiani, S., & Howlin, B. J. (2021). Random forest classification for predicting lifespan-extending chemical compounds. Scien- 41 
tific reports, 11(1), 13812. https://doi.org/10.1038/s41598-021-93070-6 42 

5. Stokes, J. M., Yang, K., Swanson, K., Jin, W., Cubillos-Ruiz, A., Donghia, N. M., MacNair, C. R., French, S., Carfrae, L. A., Bloom- 43 
Ackermann, Z., Tran, V. M., Chiappino-Pepe, A., Badran, A. H., Andrews, I. W., Chory, E. J., Church, G. M., Brown, E. D., 44 
Jaakkola, T. S., Barzilay, R., & Collins, J. J. (2020). A Deep Learning Approach to Antibiotic Discovery. Cell, 180(4), 688–702.e13. 45 
https://doi.org/10.1016/j.cell.2020.01.021 46 



Med. Sci. Forum 2022, 2, x 7 of 7 
 

 

6. Rahman, M., Browne, J. J., Van Crugten, J., Hasan, M. F., Liu, L., & Barkla, B. J. (2020). In Silico, Molecular Docking and In 1 
Vitro Antimicrobial Activity of the Major Rapeseed Seed Storage Proteins. Frontiers in pharmacology, 11, 1340. 2 
https://doi.org/10.3389/fphar.2020.01340 3 

7. Reece, R. J., & Maxwell, A. (1991). DNA gyrase: structure and function. Critical reviews in biochemistry and molecular biology, 26(3- 4 
4), 335–375. https://doi.org/10.3109/10409239109114072 5 

8. Maxwell A. (1997). DNA gyrase as a drug target. Trends in microbiology, 5(3), 102–109. https://doi.org/10.1016/S0966- 6 
842X(96)10085-8 7 

9. Zhang, Y., Chowdhury, S., Rodrigues, J. V., & Shakhnovich, E. (2021). Development of antibacterial compounds that constrain 8 
evolutionary pathways to resistance. eLife, 10, e64518. https://doi.org/10.7554/eLife.64518 9 

10. Gaulton, A., Hersey, A., Nowotka, M., Bento, A. P., Chambers, J., Mendez, D., Mutowo, P., Atkinson, F., Bellis, L. J., Cibrián- 10 
Uhalte, E., Davies, M., Dedman, N., Karlsson, A., Magariños, M. P., Overington, J. P., Papadatos, G., Smit, I., & Leach, A. R. 11 
(2017). The ChEMBL database in 2017. Nucleic acids research, 45(D1), D945–D954. https://doi.org/10.1093/nar/gkw1074 12 

11. Sterling, T., & Irwin, J. J. (2015). ZINC 15--Ligand Discovery for Everyone. Journal of chemical information and modeling, 55(11), 13 
2324–2337. https://doi.org/10.1021/acs.jcim.5b00559 14 

12. Natekin, A., & Knoll, A. (2013). Gradient boosting machines, a tutorial. Frontiers in neurorobotics, 7, 21. 15 
https://doi.org/10.3389/fnbot.2013.00021 16 


