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ABSTRACT: Cancer is among the top ten causes of death in the world but in spite of 

the efforts of the pharmaceutical companies and many governmental organizations, new 

and more effective drugs are urgently needed. Computer assisted studies have been 

widely used to predict anticancer activity taking into account different molecular 

descriptors, statistical techniques, cell lines and data sets of congeneric and non-

congeneric compounds. This paper describes a QSAR study and the successful 

application of 3D-MoRSE descriptors for developing Linear Discriminant Analysis 

(LDA) to predict the anticancer potential of a diverse set of indolocarbazoles 

derivatives. Despite the structural complexity of this sort of compounds the used 

descriptors are able to identify the most remarkable features like the incidence of 

polarizability of the substituents and the interatomic distance in the 7-azaindole moiety 

in the antiproliferative activity. A comparison with other approaches such as the 

Getaway, Randić molecular profile, Geometrical, RDF descriptors, was carried out 

showing the model with 3D-MoRSE descriptors resulted in the best accuracy and 

predictive capability. An LDA based desirability analysis was conducted to select the 

levels of the predictor variables which should generate more desirable drugs, i.e. with 

higher posterior probability to be classified cytotoxic.  
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Introduction 

One of the most important issues in Medicinal Chemistry is cancer, which encompasses 

a group of diseases characterized by the excessive and uncontrolled growth of cells 

invading and impairing tissues and organs and can, eventually, result in the death. In 

2005, 7.6 million of the 58 million deaths registered in the world were caused by 

cancer. Over 70% of these deaths were in countries with low or average incomes where 

the resources for the diagnosis and the treatment of the disease are limited or even 

nonexistent [1].  

The search for new anticancer drugs plays a central role in the research programs of 

pharmaceutical companies but also those of many governmental organizations [2]. 

However, it is estimated that the rate of incidence of cancer far from decreasing will rise 

to about 9 million in 2015 and 11.4 million in 2030. Hence, new and effective drugs are 

increasingly and urgently needed. A large number of anticancer agents have been 

discovered that act at different levels [3] and have higher efficacy and lower toxicity 

than existing treatments. These databases can be exploited with the help of automated 

and multivariate data analysis methods [4-6]. The latter relates the molecular structures 

with their biological properties by establishing computational models able to assign 

activity values to new untested compounds [7, 8]. 

QSAR techniques in anticancer activity studies have previously reported the use of 

different molecular descriptors, statistical techniques, cell lines and data sets of 

congeneric and non-congeneric compounds as well as the respective toxicological 

assays of these compounds [4, 9-17].  

An interesting group of compounds is indolocarbazole derivatives whose properties as 

protein kinase C and topoisomerase I inhibitors have been widely studied [18, 19]. 

Rebeccamycin, a microbial metabolite isolated from cultures of Saccharothrix 

aerocolonigenes, which belong to this group, is an antitumor antibiotic that inhibits 

topoisomerase I by stabilizing the topoisomerase I-DNA cleavable complex [20, 21]. 

Also, it has been shown that although topoisomerase I is a target for most of the 

rebeccamycin derivatives, the inhibition of other enzymes may also be a contributing 

factor to their cytotoxicity. However, its toxicity prohibits its use in cancer 

chemotherapy. Structure–activity relationship studies have been carried out with the 

purpose of improving the pharmacological profile of rebeccamycin,[19, 22] and have 

led to the development of a schematic representation of a drug-topoisomerase I-DNA 

ternary complex.  



In spite of its promise and the diversity and quantity of derivatives developed, no 

anticancer QSAR studies taking into account these types of compounds have been 

reported. In this paper we report a QSAR model for the rational selection of anticancer 

compounds which involves a diverse data set of indolocarbazoles derivatives. The use 

of the 3D descriptors is reported as well, specifically the 3D-MoRSE, owing to the 

flexibility of these descriptors. They afford the possibility for choosing an appropriate 

atomic property and in this way we could adapt them to the specific problem under 

study. Besides, these descriptors present an advantage as they code with fixed-length 

representation of 3D molecular structure, allowing us to compare the datasets 

comprising of molecules of different sizes, and number of atoms [23, 24]. 

 

Materials and methods 

Data sets: 

In the present study we used a data set of 125 compounds whose anticancer activity 

against murine leukemia tumor cell line (L1210) has been previously reported. Eligible 

compounds were determined by reviewing the literature [22, 25-37].   

The data encompasses rebeccamycin analogues from indolo[2,3-c]carbazole, 

indolocarbazoles bearing amino acid residues, sugar units linked to both indole 

nitrogens, 7-azaindole moieties or different substituents on the indolocarbazole 

framework. Another group consists of dipyrrolo[3,4-a:3,4-c]carbazole-1,3,4,6-tetraones, 

substituted with various saturated and unsaturated side chains, indolylpyrazolones and 

indolylpyridazinedione. Finally, we studied isogranulatimide and bis-imide 

granulatimide analogues modified on the indole moiety and on the imide heterocycles. 

Cytotoxicity was measured by the microculture tetrazolium assay as described by 

Leonce, S. et. al. [38]. Results are expressed as IC50, the concentration at which the 

optical density of treated cells with respect to untreated controls is reduced by 50%.  

Resulting from the need for more potent and less toxic new anticancer drugs, we 

established the threshold value of activity IC50 equal to 10 µM, thereby only the 

compounds with an activity value lower than the aforementioned were considered as 

active.   

In order to obtain validated QSAR models the dataset was divided into training and test 

sets. Ideally, this division should be performed such that points representing both 

training and test sets are distributed within the whole descriptor space occupied by the 

entire dataset, and each point of the test set is close to at least one point of the training 



set. This partitioning ensures that a similar principle can be employed for the activity 

prediction of the test set. For this reason, k-Means Cluster Analysis (k-MCA) was 

employed to split the set of compounds and achieve the desired distribution.  

 

k-Means cluster analysis 

The k-MCA may be used in training and test sets design [39]. The idea is to partition 

the set of compounds under study into several statistically representative classes of 

chemicals. Then the training and test sets can be selected from the members of these 

classes. This procedure ensures that any chemical class (as determined by the clusters 

derived from k-MCA) will be represented in both compound series (training and test). It 

allows one to design both, training and test sets, which are representative of the entire 

“experimental universe”. Figure 1 illustrates graphically the above-described procedure. 

Compounds k-MCA

Cluster 1

 Cluster 2

 Cluster 3

Cluster 4

TRAINING

    SERIES

PREDICTING

     SERIES

 

Figure 1. Training and Predicting series design throughout k-MCA. 

The k-MCA was carried out for active and non-active compounds by two separate 

analyses. The first involved 68 active compounds, which were split into five clusters 

with 1, 17, 18, 16 and 16 members respectively, whereas the second analysis yielded 

four clusters containing 4, 16, 10 and 27 members for a total of 57 non-active 

compounds. 

Selection of the test set was carried out by taking the compounds with the minor 

Euclidean distance in each cluster. We took into account the number of members in 

each cluster and the standard deviation of the variables in the cluster (with the goal of 

making it as low as possible) to ensure a statistically acceptable partitioning of the data 

into several clusters. We also examined among and within clusters for variance the 

Fisher ratio and their p-level of significance which were considered to be lower than 



0.05. The variables which were finally used in the analysis showed p-levels < 0.05 for 

Fisher test. The results are depicted in Table 1 and Table 2. 

Table 1. Analysis of variance between and within clusters. 

Active compounds set 

 
Between 

clusters 

Within 

clusters 
F Significance 

Mor11v 52.96 14.04 59.41 <10
-6 

Mor25v 57.12 9.88 91.01 <10
-6 

Mor25p 58.03 8.97 101.86 <10
-6 

 

Non-active compounds set 

 
Between 

clusters 

Within 

clusters 
F Significance 

Mor11v 36.53 19.47 33.15 <10
-6 

Mor25v 46.91 9.09 91.22 <10
-6 

Mor25p 46.65 9.35 88.14 <10
-6 

 

Table 2. Analysis of the descriptive statistics of the variables in each cluster.   

Active compounds set 

Descriptive 

Statistics 

Variables Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 

Mean Mor11v 3.447 0.952 -0.480 0.401 -1.088 

Mor25v 2.578 -0.065 -0.268 -1.130 1.339 

Mor25p 2.806 0.010 -0.270 -1.175 1.293 

Standard 

Deviation 

Mor11v 0 0.497 0.282 0.463 0.607 

Mor25v 0 0.335 0.358 0.370 0.508 

Mor25p 0 0.332 0.345 0.340 0.479 

Variance Mor11v 0 0.247 0.080 0.214 0.368 

Mor25v 0 0.112 0.128 0.137 0.258 

Mor25p 0 0.110 0.119 0.116 0.230 

 

 

 



Non-active compounds set 

Descriptive 

Statistics 

Variables Cluster 1 Cluster 2 Cluster 3 Cluster 4 

Mean Mor11v -0.811 -0.186 1.703 -0.400 

Mor25v 2.454 0.085 0.886 -0.742 

Mor25p 2.397 0.062 0.940 -0.740 

Standard 

Deviation 

Mor11v 1.164 0.664 0.601 0.461 

Mor25v 0.976 0.281 0.680 0.183 

Mor25p 1.005 0.299 0.663 0.199 

Variance Mor11v 1.355 0.441 0.361 0.213 

Mor25v 0.953 0.079 0.463 0.034 

Mor25p 1.010 0.089 0.439 0.040 

 

Computational strategies: 

The DRAGON [40] computer software, version 5.4, was employed to calculate all the 

molecular descriptors included in this study. We carried out geometry optimization 

calculations for each compound using the quantum chemical semi-empirical method 

AM1 [41] included in MOPAC 6.0 [42] before calculating the DRAGON descriptors.  

Mathematical models were obtained by means of Linear Discriminant Analysis (LDA) 

as implemented in STATISTICA software version 6.0 [43]. Forward stepwise was 

employed as the variable selection strategy.  The quality of the model was determined 

by examining: the Wilk’s lambda ( ), the Mahalanobis distance (D
2
), the Fisher’s ratio 

(F), and the corresponding p-level (p(F)). The percentage of good classifications and the 

proportion between the cases and adjustable parameters (ρ>4) in the equation were 

examined as well. The Mahalanobis distance indicates the separation of the respective 

groups, showing whether the model possesses an appropriate discriminatory power for 

differentiating between the two groups. It establishes a perfect discrimination for λ = 0 

and not discrimination when λ = 1 

The values 1 and -1 were used to classify compounds as active and inactive 

respectively. Finally, the posteriori probabilities were used to classify the compounds as 

anticancer or not against murine leukemia tumor cell line (L1210).  

 

 



Orthogonalization of descriptors: 

The orthogonalization process of molecular descriptors was introduced by Randić 

several years ago as a way of improving the statistical interpretation of the model which 

had been built by using interrelated indices [44-48].  The main tenet of this approach is 

to avoid the exclusion of descriptors on the basis of their collinearity with other 

variables previously included in the model. In our view, the collinearity of the variables 

should be as low as possible because interrelatedness among the different descriptors 

can result in a highly unstable regression coefficient. Making it impossible to know the 

relative importance of an index and underestimating the utility of the regression model 

coefficients. The Randić method of orthogonalization has been described in detail in 

several publications [44-48]. 

 

Identifying outliers: 

An analysis of the applicability domain of the model was carried out to explore the 

presence of potential outliers and compounds that influence model parameters resulting 

in an unstable model. The test set was included to check how adequate the model was 

for the external prediction.  

The leverage values were calculated for every compound and plotted vs. standard 

residuals (Y-axis). Then, the domain of applicability of the model was defined as a 

squared area within the ±2 band for residuals and a leverage threshold [49, 50] 

The leverage (h) of a compound in the original variable space which measures its 

influence on the model is defined as: 

xXXxh TT

ii

1
                     ni ,....,1                         Eq. 1 

where xi is the descriptor vector of the considered compound and X is the model matrix 

derived from the training set descriptor values. The warning leverage h* is defined as 

follows: 

nph /3*
                                                         Eq. 2 

where n is the number of training compounds and p’ is the number of model adjustable 

parameters. 

 

Comparison with other approaches: 

The use of 3D-MoRSE descriptors for the prediction of anticancer activity, explained in 

the previous section, was compared with other methodologies. The Getaway [51], 



Randić molecular profile [52, 53], Geometrical [51], RDF [54] and WHIM [55-61] 

descriptors were calculated. 

In order to make the comparison on the same basis, all models were developed using the 

same data set and included four variables from the 3D descriptors of the DRAGON 

software. Also, we focussed on the quality of the statistical parameters of the 

discriminant established above and the predictive capability of the models generated.  

 

Desirability analysis: 

A common problem in drug design is to choose a set of conditions or levels for the 

independent variables, in our case being molecular descriptors, which generates the 

most desirable product in terms of output values of the predictor variables. The 

procedure of optimization involves two main steps: (1) predicting responses on the 

property under study (in this case, the anticancer potency), by fitting the observed 

responses using an equation based on the levels of the predictive variables (in this case, 

the 3D-MoRSE descriptors), and (2) finding the levels of the X-variables that 

simultaneously produce the most desirable predicted responses on the studied property 

[62]. In the present study, the desirability analysis was carried out with STATISTICA 

6.0 [43], by setting the current level of each predictor variable to the respective mean. 

Curvature s and t parameters were fixed at 1.00 considering the linear form of the 

function used to perform the discriminant analysis. Spline method was selected for 

fitting the desirability function and surface/contours maps.  

 

Results and discussion: 

The final partition of the data resulted in a structurally representative distribution of 

chemicals into training and predicting series. A training set of 55 active and 45 non-

active compounds was created and a test set of 13 active and 12 non-active compounds 

(see Tables 1 and 2 in Supplementary Material). It is worth noting that cluster 1 from 

the active compounds involves only one member; case 110, which has been included in 

the training set. 

At first sight, it could be considered a potential outlier; however its inclusion in this 

QSAR study might be important due to the structural information that it can provide 

(see Figure 2). 
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Figure 2. Compound number 110. 

 

After the application of the LDA, the best model obtained was: 

60.02560.142516.151141.13143.1 vMorpMorvMorpMorAact        Eq. 3 

 

=0.610         F(4.95) = 15. 187          p < 0.0001         C = 0.698           ρ = 9.0 

 

Where Aact is a dummy variable [63] with Aact =1 for active compounds and Aact = -1 for 

non-active ones. The Wilk’s statistic ( =0.610) Fischer Ratio (F(4.95) = 15.187), and 

significance level (p < 0.0001) of the parameters were assessed [7]. In addition, we 

controlled the Matthew’s coefficient (C = 0.698) [64]  and the cases/adjustable 

parameters ratio (ρ = 9.0) taking into account the smallest group into the classification 

[65]. It can be seen that the model is statistically significant (p < 0.05) and the 

correlation coefficient is always between -1 and +1. A value of -1 indicates total 

disagreement, +1 total agreement and 0 for completely random predictions. The 

correlation coefficient may often provide a much more balanced evaluation of the 

prediction than, for instance, the percentage [66]. In this case the high value for the 

Matthew’s indicates a strong linear relationship between the molecular descriptors and 

the output of the model [67].  

Finally, the high value of ρ = 9.0 shows that the model is not over-fitted by an excess of 

parameters; this parameter is expected to be >4 for linear models [65]. This discriminant 

model showed excellent results in the training and external prediction series used to 

validate the model, as can be seen in Table 3.  

 

 

 

 



Table 3. Training and Predictability analysis results  

Including non classified compounds 

 Training (85.00% total) Prediction (84.00% total) 

 % Actives Non-actives % Actives Non-actives 

Actives 85.45 47 8 84.62 11 2 

Non-actives 84.44 7 38 83.33 2 10 

 

Without non classified compounds 

 Training (87.37% total) 

 % Actives N. actives N. classified 

Actives 88.68 47 6 2 

N. actives 83.72 6 36 2 

 Prediction (84.00% total) 

 % Actives N. actives N. classified 

Actives 84.62 11 1 1 

N. actives 83.33 2 9 1 

 

In spite of achieving adequate statistical results from the 3D-MoRSE descriptors family, 

we thought that it was not enough to say that our model design was appropriate. 

Therefore, we carried out a comparison of different methodologies to validate our 

model. The results obtained from this comparison are given in Table 4. The variables 

derived using DRAGON are given in Table 3 of Supplementary Material including the 

3D-MoRSE descriptors employed. All models were developed by using the same 

training and test sets.  

Table 4. The statistical parameters of the linear discriminant models obtained for all 

methodologies included in the comparison.  

 METHODOLOGIES 

PARAMETERS Geometrical Getaway 

Randić 

molecular 

profile 

RDF WHIM 
3D-

MoRSE 

Variables 

J3D, QZZv, 

QYYe, 

DISPp 

H5v, 

HATS8e, 

HATS8p, 

RCON 

DP02, 

DP15, 

DP16, 

SP08 

RDF020e, 

RDF060p, 

RDF080p, 

RDF090p 

G1u, 

G2u, 

E1u, 

L2m 

Mor31p, 

Mor11v, 

Mor25p, 

Mor25v 



 0.694 0.816 0.851 0.777 0.765 0.610 

F(4.95) 10.45 5.35 4.15 6.81 7.29 15.19 

p <0.0000 <0.0006 <0.0038 <0.0001 <0.0000 <0.0001 

C 0.477 0.421 0.352 0.389 0.556 0.698 

% Total 74.00 71.00 68.00 70.00 78.00 85.00 

% Actives 74.55 89.09 85.45 78.18 80.00 85.45 

% Inactives 73.33 48.89 46.67 60.00 75.56 84.44 

 

From an inspection of Table 4 it is quite clear that the best results are provided by the 

3D-MoRSE descriptors since they have the highest accuracy (% Total = 85.00) and 

discriminatory power (λ = 0.610) as well as the best correlation between the molecular 

descriptors and the output of the model (C = 0.698). 

After demonstrating the superiority of the 3D-MoRSE descriptors using other 

methodologies, we used Randić orthogonalization to avoid collinearity between the 

variables. The QSAR model obtained (Eq. 4) after this procedure is given below, 

together with the statistical parameters.  

 

60.02560.142573.01118.13108.1 4321 vMorpMorvMorpMorAact
    Eq. 4 

 

=0.610         F(4.95) = 15. 187          p < 0.0001         C = 0.698           ρ = 9.0 

 

We also performed ROC curve analysis to examine our classifier against a random one. 

A pronounced ROC curve is depicted in Figure 3 with an area under curve markedly 

higher than 0.5- which is the threshold value expected for a random classifier (diagonal 

line)[68]. 
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Figure 3. ROC curve of the training set. Comparison with the random classifier. 

Finally, an analysis of the applicability domain of the model was carried out and the 

results can be seen in the next figure.   

 

Figure 4. Applicability domain of the model. 

As it can be seen from the chart, two compounds in the training set are outside the 

domain of applicability of the model due to their leverage values (see figure 5 for 

structural details). Nevertheless, none of these compounds were considered as outliers 



because their values of standardized residuals are not greater than two standard 

deviation units.  

A deeper analysis showed that compound 14 has a very similar leverage value to the 

threshold value established previously h
*
 = 0.15 (h14 = 0.156) while compound 110 

shows the highest value (h110 = 0.236). Both compounds have similar chains attached to 

the N-imide since they encompass an aliphatic chain with amine groups which are also 

the longest ones in the data but in the specific case of compound 110 it has been 

explained before how it is included in a single cluster due to its chemical structure. 

However, it is worthy noting that it is not considered an outlier as the results of the 

cluster analysis had suggested. 
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Figure 5. Compounds from the training set that fall out of the domain of applicability of 

the model. 

Consequently, a new model was developed by removing the two compounds of the 

training set that were determined to be out of the domain to examine its effect on the 

statistical parameters of the model (see Table 5 for comparison). As a result of the 

analysis, no significant variations resulted in the model parameters. It follows that, the 

influence of these compounds is not critical for the model and they were not excluded 

because of the aforementioned conclusion about the possible importance of the 

structural information provided by the molecule 110 for the successful development of 

the model. 



Table 5. Parameters of the former model and the variations after removing the potential 

influential compounds (14 and 110) 

Model b Mor31p
 

Mor11v
 Mor25p Mor25v 

% 

Total 

% 

Actives 

% 

Inactives 

Eq. 4 0.60 -1.08 -1.18 0.73 -14.60 85.00 85.45 84.44 

Under study 0.62 -1.06 -1.19 0.68 -14.12 84.69 86.79 82.22 

 

Once equation 4 was determined to be the best model, a desirability analysis was 

performed based on the levels of the predictor variables used in the model. The optimal 

values for obtaining the highest probability to be classified as a potential anticancer  

compound should be about -0.354, -0.277, 1.071 and -0.108 for Mor31p, Mor11v, 

Mor25p and Mor25v, respectively, fixing the other three variables at their present mean 

values (see Table 6 and Figure 6). However, if the current values for the four variables 

(-0.128, 0.235, 0.485 and 0.413 respectively) are used, it is possible to obtain a 

desirability value for the anticancer potency of 0.630. 
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Figure 6. Profiles for posterior probabilities and desirability. 

 

 

 



Table 6. Optimal values for every variable in the model to obtain the highest 

desirability values remaining the mean values of the other three variables 

Variables Factor levels P. P. (inactive)   P. P. (active) 
Desirability 

values 

Mor31p -0.354 0.030 0.970 0.970 

Mor11v -0.277 0.040 0.960 0.960 

Mor25p 1.071 0.000 1.000 1.000 

Mor25v -0.108 0.000 1.000 1.000 

 

On the other hand, the contour plots in Figure 7 show the overall response desirability 

produced by different level combinations of the two independent variables (fixing the 

value of the remaining two variables at their mean values). The plots were created by 

transforming the previous scores of each of the four variables into desirability scores 

(they could range from 0.0 - undesirable (in green) to 1.0 - very desirable (in red). The 

red zone in the contour plots represents the higher probability of obtaining a drug with 

the best anticancer profile.  
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Figure 7. Desirability Surface/Contours of the posterior probabilities and desirability 

resulting from the classification model (Eq. X); Method: Spline Fit. 



To obtain an insight into the activity-structure relationship we interpreted the 

descriptors in the model and their influence in the anticancer profile of some molecules 

to find possible patterns.  

The 3D-MoRSE descriptors are based on the following equation: 
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                                       Eq. 5 

where I(s) is the scattered electron intensity, w is an atomic property, rij are the 

interatomic distances between the ith and jth atoms respectively, s measures the 

scattering angle and A is the number of atoms. 

In this study, the variables in the model are related to the atomic polarizabilities and 

atomic van der Waals volumes but at different scattering angle values. It is important to 

note the sinusoidal nature of the relation between I(s) and s showing how s is the 

determining parameter of the 3D-MoRSE descriptor’s sign and its contribution to the 

classification when the atomic properties are the same. It can be observed from the 

mean values of the variables described in the desirability analysis explained above, how 

the Mor31p tends to have negative values while the rest of them show positive values. 

Consequently, both variables weighted by polarizability Mor31p and Mor25p; 

contribute positively to the classification of the antiproliferative activity. From the 

analysis of figure 8 it can be seen how the higher the polarizability of the substituent, 

the higher the posterior probability to be considered active is for the rebeccamycin 

analogues in the data. 



 

Figure 8. Influence of the polarizability in the classification 

However, when the nature of the substituent is the same, their position is critical for the 

activity. This behavior is observed in a comparison between rebeccamycin analogues 

bearing one 7-azaindole moiety, which are position isomers such as compounds 53 and 

57, resulting in a lost of activity when the sugar framework is linked to the N-pyridine. 

 

Figure 9. Influence of the interatomic distance in the classification. 

 

 

 



Conclusions 

In summary, a QSAR model was developed by using 3D-MoRSE descriptors towards 

the rational selection of anticancer compounds considering the antiproliferative activity 

against murine leukemia tumor cell line (L1210) of a structurally and pharmacologically 

diverse data set of indolocarbazoles derivatives.  

A comparison with the Getaway, Randić molecular profile, Geometrical, RDF and 

WHIM descriptors was carried out and the model with 3D-MoRSE descriptors had the 

best accuracy and predictive capability.  

Additionally, desirability analysis based on the LDA model yielded the optimal 

descriptor values that a drug candidate should have for guaranteeing antiproliferative 

activity. The weights of the variables that were found to be most significant in 

describing the model were atomic polarizabilities and atomic van der Waals volumes.  

However, despite the ability of the alternative QSAR model proposed here to predict 

accurately the anticancer potential of drugs, further study is recommended. New QSAR 

models employing Multiple Regression Linear technique should be developed in order 

to establish quantitative relations more specific to the antiproliferative activity since it is 

not possible to discern the difference in activity between compounds but only the 

probability to be classified as active.    
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