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Abstract: In this report, we show the results of QSAR (quantitative structure-activity 

relationship) studies of tyrosinase inhibitory activity, by using the bond-based quadratic 

indices as molecular descriptors (MDs) and linear discriminant analysis (LDA), to 

generate discriminant functions to predict the anti-tyrosinase activity. The best two 

models (Eqs.8 and 14) of the total 12 QSAR models developed here show accuracies of 

93.51% and 91.21%, as well as high Matthews correlation coefficients (C) of 0.86 and 

0.82, respectively, in the training set. The validation external series depicts values of 

90.00% and 89.44% for these best two equations 8 and 14, correspondingly. Afterwards, 

a second external prediction data was used, to perform a virtual screening of compounds 

reported in the literature as active (tyrosinase inhibitors). In a final step, a series of 

lignans is analyzed by using the in silico developed models, and in vitro corroboration of 

the activity is carried out. An aspect of great importance to remark here, is that all 

compounds present greater inhibition values than Kojic Acid (standard tyrosinase 

inhibitor: IC50 =16.67μM). The current obtained results could be used as a method to 

increase the speed, in the biosilico discovery of leads for the treatment of skin disorders.  
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INTRODUCTION 

Tyrosinase or polyphenoloxidase (EC 1.14.18.1) is a bifunctional, copper-

containing enzyme widely distributed on the phylogenetic tree. This enzyme uses 

molecular oxygen to catalyze the oxidation of monophenols to their corresponding o-

diphenols (cresolase activity) as well as their subsequent oxidation to o-quinones 

(catecholase activity). The o-quinones thus generated polymerize to form melanin, 

through a series of subsequent enzymatic and non-enzymatic reactions [1-3]. This 

tyrosinase process is involved in abnormal accumulation of melanin pigments 

(hyperpigmentation). Therefore, tyrosinase inhibitors have been established as important 

constituents of cosmetic materials, as well as depigmenting agents for hyperpigmentation 

[4]. 

Tyrosinase may also play an important role in neuromelanin formation in the human 

brain, particulary in substantia nigra, and could be central to dopamine neurotoxicity, as 

well as contribute to the neurodegeneration associated with Parkinson’s disease [5]. 

Melanoma specific anticarcinogenic activity is known to be linked with tyrosinase 

activity [6]. 

These broad applications and others have caused that tyrosinase inhibitors have 

been interested as molecular target of natural product and synthetic chemistry and, more 

recently, in other chemical fields such as computational and theoretical chemistry [7, 8]. 

In these areas, some QSAR studies from heterogeneous dataset of compounds have also 

been developed, finding models that permit predicting the anti-tyrosinase activity of 

organic-chemicals [9-13]. Such models could be used to increase the effectiveness of 
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HTS (High Throughput Screening) in several ways [14, 15], like the speeding up of lead 

identification or minimizing costs in drug discovery processes[16]. 

To this effect, our research group has applied extensively QSAR/QSPR 

investigations related to chemical, physicochemical and biological properties of different 

compounds and drugs [17-21],  including analysis of nucleic acid-drug interactions [22, 

23] and discovery of antimalarial compounds[24]. These studies and others have been 

made by using the ‘in house’ TOMOCOMD-CARDD software (acronym of TOpological 

MOlecular COMputer Design-Computer Aided ‘Rational’ Drug Design) [25], a novel 

computer-aided molecular design scheme.  

Taking these considerations into account, we proposed here a new set of molecular 

descriptors, namely non-stochastic and stochastic bond-based quadratic indices; with the 

aim to prove the usefulness of these novel molecular descriptors, 1) their application to 

finding QSAR models in the prediction of tyrosinase inhibitory activity, 2) its use in a 

virtual screening of compounds and, as a final objective, 3) the virtual and experimental 

assays of a new series of lignans are shown. These new molecular parametrization and 

proposed algorithm could help to future successful identification of “real” or “virtual” 

organic-chemicals with such an activity. 

MATERIALS AND METHODS 
 
TOMOCOMD-CARDD Method 

In an early publication, the theory of the bond, group and bond-type, as well as total 

non-stochastic and stochastic quadratic indices, computed from the kth non-stochastic and 

stochastic edge adjacency matrices, Ek and ESk, respectively; for small-to-medium sized 

organic compounds has been explained in some detail [26]. 
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The total and local (group and bond-type) bond-based quadratic indices were 

calculated, by the interactive program for molecular design and bioinformatic research 

TOMOCOMD-CARDD [25]. The software was developed based on a user-friendly 

philosophy. Therefore, this graphics software shows a great efficiency of interaction with 

the user, without prior knowledge of programming skills (e.g. practicing pharmacist and 

organic chemist, teacher, university student, and so on). CARDD subprogram allows 

drawing the structures (drawing mode) and calculating 2D (topological), 3D-chiral (2.5D) 

and 3D (geometric and topographical) non-stochastic and stochastic molecular 

descriptors (calculation mode). 

The main steps for the application of this method in QSAR/QSPR and for drug design 

can be briefly summarized as follows: 

1. To draw of the molecular pseudographs for each molecule in the data set, by using the 

drawing mode. 

2. To use appropriate weights in order to differentiate the molecular atoms. The weights 

used in this work are those previously proposed for the calculation of the DRAGON 

descriptors [27-29], i.e. atomic mass (M), atomic polarizability (P), atomic Mullinken 

electronegativity (K), van der Waals atomic volume (V) plus the atomic 

electronegativity in Pauling scale (G) [30]. The values of these atomic labels are 

shown in Table 1[27-30]. 

3. Computation of the non-stochastic and stochastic total and local bond-based quadratic 

indices can be carried out in the software calculation mode, where one can select the 

bond properties and the descriptor family before calculating the molecular indices. 

This software generates a table in which the rows correspond to the compounds, and 
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the columns correspond to the bond-based (both total and local) quadratic maps, or 

other MD family implemented in this program. 

4. Development of a QSPR/QSAR equation by using several multivariate analytical 

techniques, for instance, linear discrimination analysis. Therefore, one can find a 

quantitative relationship between an activity A and the bond-based quadratic 

fingerprints having, for instance, the following appearance: 

         A = a0q0(w)  + a1q1(w) + a2q2(w) +….+ akqk(w) + c                                            (1)  

where A is the measured activity, qk(w) are the kth non-stochastic total bond-based 

quadratic indices, as well as the ak’s and c are the coefficients obtained by the linear 

regression analysis. 

5. Test of the robustness and predictive power of the QSPR/QSAR equation by using 

internal [leave-one-out (LOO)] and external (using both a test set and an external 

predicting set) validation techniques. 

The bond–based TOMOCOMD-CARDD descriptors computed in this study were the 

following: 

1)   kth (k = 15) total non-stochastic bond-based quadratic indices not considering and 

considering H-atoms in the molecular graph (G) [qk(w) and qk
H(w), respectively]. 

2) kth (k = 15) total stochastic bond-based quadratic indices not considering and 

considering H-atoms in the molecular graph (G) [sqk(w) and sqk
H(w), respectively]. 

3)   kth (k = 15) bond-type local (group = heteroatoms: S, N, O) non-stochastic quadratic 

indices not considering and considering H-atoms in the molecular graph (G) [qkL(wE) 

and qkL
H(wE), correspondingly]. These local descriptors are putative molecular 

charge, dipole moment, and H-bonding acceptors.  
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4)   kth (k = 15) bond-type local (group = heteroatoms: S, N, O) stochastic quadratic 

indices not considering and considering H-atoms in the molecular graph (G) 

[sqkL(wE),  and sqkL
H(wE), correspondingly]. These local descriptors are also putative 

molecular charge, dipole moment, and H-bonding acceptors. 

Experimental Methods 

Chemical Techniques 

The isolation and structural characterization of the lignan compounds, their 

biological studies and cross references have been reported by one of our research teams 

[31]. 

In Vitro Assay 

The tyrosinase inhibition assay was performed with Kojic Acid and L-Mimosine as 

standard inhibitors of the tyrosinase in a 96-well microplate format, by using a 

SpectraMax 340 micro-plate reader (Molecular Devices, CA, USA), according to the 

method developed by Hearing [32]. Briefly, the compounds first were screened for the o-

diphenolase inhibitory activity of tyrosinase, by using L-DOPA as substrate. All the 

active inhibitors from the preliminary screening were subjected to IC50 studies. The 

compounds were dissolved in methanol to a concentration of 2.5%. Thirty units of 

mushroom tyrosinase (28 nM from Sigma Chemical Co., USA) were first preincubated 

with the test compounds in 50 nM Na-phosphate buffer (pH 6.8) for 10 min at 25 oC. 

Then the L-DOPA (0.5 mM) was added to the reaction mixture, and the enzymatic 

reaction was monitored by measuring the change in absorbance at 475 nm (at 37 oC), due 

to the formation of the DOPAchrome, for 10 min. The percentage of inhibition of the 
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enzyme was calculated as follows, by using a MS Excel®TM 2000 (Microsoft Corp., USA) 

computing sheet developed for this purpose: 

Percent Inhibition = [B – S/B] x 100                                                                             (2) 

Here the B and S are the absorbances for the blank and samples, respectively. After 

the screening of the compounds, median inhibitory concentrations (IC50) were also 

calculated. All the studies have been carried out at least in triplicate and the result 

represents the mean ± SEM (standard error of the mean). Kojic Acid and L-Mimosine 

were used as standard inhibitors of the tyrosinase, and both of them were purchased from 

Sigma Chem. Co., USA. 

 

RESULTS AND DISCUSSION 

Assembling the Database 

The main step to develop the QSAR models is to collect a database with compounds 

of several structural features, assuring an extrapolating power more accurate in the entire 

chemical space. A total of 658 compounds were selected with this purpose, as well as by 

considering these aspects mentioned above.  

The subset of active chemicals in this data (246 tyrosinase inhibitors) was chosen 

from the literature, warranting sufficient structural diversity; it includes many 

representative tyrosinase inhibitor families such as: hydroxychalcones [33], kojic acid 

tripeptides [34], novel N-substituded N-nitrosohydroxylamines [35], vitamin B6 

compounds [36], steroids [37] and so on, which are illustrated in Figure 1, together with 

the reference tyrosinase inhibitors that are more used. The names of compounds in the 

dataset and their experimental values, taken from the literature, are given in Table 1 of 
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Supplementary Data. The molecular structures of all members of these families, and of 

the rest of tyrosinase inhibitors employed in this study, are depicted in Table 2 

(Supplementary Data). The chosen active compounds present various types of inhibition, 

sources of the enzyme or substrates used to measure the activity, increasing the 

possibilities in the process of identification/selection of novel leads. Therefore, these data 

of tyrosinase inhibitors presented here could be successfully used for these scientists 

concerning the area of tyrosinase inhibitor researches. 

Figure 1 comes about here (see end of the document) 

In the case of inactive compounds we chose at random 412 drugs having a series of 

other pharmacological uses [38]. Here as in the active set we try to assure an adequate 

structural diversity. 

 

Cluster Analysis Techniques to Perform Training and Test Sets 

As we said above a crucial aspect is the structural diversity of these subsets. To verify 

this, we make use of different cluster analysis (CA) techniques, implemented in the 

STATISTICA software [39]. The dendrograms obtained through hierarchical CAs [40] of 

the active and inactive subsets are shown in Figures 2 and 3, respectively. We can 

visualize several groups in the output dendrograms of the performed k-NNCA, which 

permit us to prove the great quantity of structural families existing here. 

Figure 2 and 3 comes about here (see end of the document) 

Besides, the design of training and prediction series is carried out with the aim of 

finding the classification functions. To this effect partition of active and inactive sets is 

necessary to select the compounds in a ‘rational’ way. On one hand, a k-MCA I split the 
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active set (tyrosinase inhibitors) into 10 clusters. The data of inactive compounds was 

partitioned by a second k-MCA (k-MCA II) into 12 clusters. The used variables were the 

kth non-stochastic bond-based quadratic indices. The analysis of variance for these k-

MCAs are summarized in Table 2. 

Table 2 comes about here (see end of the document) 

Figure 4 comes about here (see end of the document) 

In the diagram of Figure 4 are illustrated all the processes described above to 

perform the training (478 compounds) and prediction (180 compounds) sets.  In the 

training series 183 compounds were actives, and 295, inactive substances. On the other 

hand, in the validation set 63 compounds were selected as tyrosinase inhibitors (actives), 

and the remaining 117, inactives (non-inhibitors of tyrosinase). 

 

Finding QSAR Models 

After the selection of the training series, the next step is to fit discriminant functions 

in order to classify the compounds as either active or inactive, in our case, we made use 

of the linear discriminant analysis (LDA),[41] implemented in the STATISTICA software 

[39], as statistical technique, due to its simplicity and extended use  in  drug design [21, 

41-46]. In Table 3 are depicted all the obtained models, twelve in total. The first six 

models were performed using the non-stochastic bond-based quadratic indices (Eqs. 3-8), 

and the last six, the stochastic molecular fingerprints (Eqs. 9-14). The most common 

prediction values in the QSAR models are given for the training set in Table 4. Here we 

included Wilks’ statistic (λ), the square of the Mahalanobis distance (D2), and the Fisher 
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ratio (F), as well as always took into account  p-level< 0.0001 for constructing the 

models. 

Table 3 comes about here (see end of the document) 

Table 4 comes about here (see end of the document) 

On one hand, the first five LDA models, in both sets, were obtained by using each 

one of the five atomic properties used as atomic weight (atomic labels), proposed in 

TOMOCOMD-CARDD Method Section. On the other, the sixth model in both sets 

results from combining all the proposed weighting schemes.  

The best two models were equations 8 and 14, resulting of the combination of 

weighting schemes, for the non-stochastic and stochastic bond-based quadratic indices, 

correspondingly, which are shown in Table 4. These two equations had accuracies of 

93.51% (C = 0.86) and 91.21% (C = 0.82). In Table 4 are also summarized the results of 

the statistical parameters, by using the non-stochastic and stochastic bond-based quadratic 

indices for the entire set of developed models, together with their respective values of 

accuracies, Matthews correlation coefficients (C), and some linear discriminant 

canonicals statistics, which measure the quality of the determined models. For instance, 

the good values of the canonical correlation coefficients of 0.85 and 0.72 for models 8 

and 14, respectively, are depicted in Table 4. 

The molecular descriptors in the case of these best two models showed collinearity, 

after an analysis of the correlation between the variables (data not shown). For that reason 

we used the Randić’s orthogonalization process, which has been described in detail in 

several publications [47-50], to eliminate interrelation between the variables.  
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The results of the orthogonalization processes, for the non-stochastic and stochastic 

bond-based quadratic indices, are showed in equations 15 and 16, respectively. 

Class = -0.239 -1.2571O(Pq1
H(w)) +1.7332O(Vq1(w)) -1.2723O(Kq3L

H(wE))   

             +3.3774O(Gq0L(wE)) -2.4305O(Vq0L(wE)) +1.0656O(Mq5(w)) -2.0277O(Gq1L(wE)) 

             -1.4526O(Gq5
H(w))                                                                                             (15) 

 
N = 478 λ =0.41 D2 = 5.99 F = 83.3 Canonical R = 0.77 χ2 = 417.1 QTotal= 93.51% C = 0.86 

 

Class = -0.050 -1.272 1O(Pq2L(wE)) +2.7772O(Kq0L(wE)) -4.5013O(Gq3L(wE))  

             +1.2274O(Gq14(w)) -3.7735O(Vq0(w)) +2.2476O(Pq0(w)) -0.8817O(Gq10L
H(wE)) 

             +1.2658O(Pq11L
H(wE)) +0.8629O(Vq2L

H(wE)) -5.68910O(Pq0L
H(wE))  

             -6.09111O(Pq2L
H(wE))                                                                                         (16) 

N = 478 λ = 0.44 D2 = 5.31 F = 53.4 Canonical R = 0.75 χ2 = 383.7 QTotal= 91.21%  C = 0.82 
 
 

Here, we used the symbols mO(qk(w)), where the superscript m expresses the order 

of importance of the variable (qk(w)), after a preliminary forward stepwise analysis, and 

O means orthogonal. It is important to remark that all the statistical parameters are the 

same, whether we use either a set of non-orthogonal descriptors or the corresponding set 

of orthogonal indices. 

 
First External Prediction Data 

 
The external validation process is necessary to assess the real predictive power of 

any QSAR model [51, 52]. In this case, the predictive ability of the discriminant functions 

was evaluated through a test set. In Table 5 are shown the prediction performances in the 

test set for all the models; as can be seen, the best two models (Eqs. 8 and 14) classify 
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correctly the 90.00% and 89.44%, respectively, in the prediction series. A high C value of 

0.79 and 0.78 can be observed in the Eqs. 8 and 14, correspondingly.  

In Figures 5 and 6 we give a plot of the pictorial representations for the 

classification of all compounds, in both training and test sets from models 8 and 14, 

respectively. These results encouraged us to use the models in a virtual screening study.  

Table 5 comes about here (see end of the document) 

Figure 5 comes about here (see end of the document) 

 Figure 6 comes about here (see end of the document) 

All the posterior classification probabilities (ΔP%) and their respective canonical 

scores for all compounds (actives and inactive ones) in both training and prediction 

databases with all models are depicted in Tables 3-10 (Supplementary Data). By using 

the models, one compound can then be classified as active, if ΔP% > 0, being ΔP% = 

[P(Active) - P(Inactive)]x100, or as inactive otherwise. 

 

Second External Prediction Data 
 

High Throughput Screening (HTS) has been proposed as one of the automated 

methods to resolve the arduous task of screening thousands of compounds, from large 

databases, due to expensive costs. In this sense another approach has emerged, the virtual 

HTS, to solve the major challenges in drug discovery: the massive cost of new drugs 

development [53]. Therefore, the in silico approaches and, among them, QSAR methods 

constitute a suitable alternative that can predict ahead of time the biological activity under 

study. 
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In order to test the ability of our QSAR models to detect new leads, we carried out a 

simulated virtual screening of tyrosinase inhibitors from the literature. To avoid the 

manipulation of a large database of chemicals, only 85 compounds, whose names are 

given in Table 6, were evaluated in the ligand-based virtual screening presented here. The 

collected organic-chemical are reported as active in the literature (see the last column of 

Table 6: Ref.). The molecular structures of these compounds are show in Table 11 

(Supplementary Data).  

Table 6 comes about here (see end of the document) 

Figure 7 comes about here (see end of the document) 

A cluster analysis (k-NNCA) was made to verify the molecular variability in the 

database of the virtual screening, aspect that can be visualized in the dendrogram of 

Figure 7. In the same Table 6, we also show the results of the classification of the 

compounds in the screening. Likewise, the results of ΔP% (including canonical scores) of 

the 85 compounds are depicted in Table 12 of Supplementary Data by using all the 

developed models. 

In addition and for a better visualization of the results, we provide a plot with the 

ΔP% of these compounds by using Equations 8 and 14 (Figs. 8 and 9, correspondingly).  

These external prediction data were classified by this in silico screening, with accuracies 

of 94.11% for both non-stochastic and stochastic molecular descriptors. The values of 

predictions were checked out from recent reports in the literature (see the last column of 

Table 6: Ref.). 

Figure 8 comes about here (see end of the document) 
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The adequate results in this second external prediction series can be successfully 

applied in the find of higher promissory compounds with anti-tyrosinase activity, from a 

database of thousands or even million of chemicals. On the other hand, a database of 

commercially available compounds could be used to detect new bioactive compounds 

against enzyme tyrosinase, taking into account that those drugs selected from this ligand-

based virtual screening could have well-established methods of synthesis and that their 

toxicological, pharmacodynamic and pharmaceutical properties be well known. 

 

Third External Data Set: A Translation into the Real World of Tyrosinase 

Inhibitory Assays. In Silico and In Vitro Results. 

The performance of the results obtained above encouraged us to carry out an in 

silico screening to search for novel lead compounds with tyrosinase inhibitory activity, as 

a way to show the applicability of the QSAR models obtained with the TOMOCOMD-

CARDD approach, in the selection of hit or lead compounds. 

In this sense, it was made an in silico screening of a pool of compounds, with 

structural features not presented in the database, to prove the extrapolative power of the 

QSAR models and find new tyrosinase-inhibitor chemicals. 

A family of lignans, isolated from natural sources, was chosen to be evaluated with 

the LDA-based QSAR models, and posterior in vitro assays were done to corroborate the 

in silico predictions. The results of the classification of the compounds in this set for all 

the models are summarized in Table 7. This Table also shows the values of ΔP% for 

compounds in these series, as well as their canonical scores. As can be observed all the 

compounds presented activity against the tyrosinase enzyme. 
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These theoretical results showed an adequate correspondence with the experimental 

activity. An aspect of great importance to remark here is that all the compounds present 

greater inhibition values than Kojic Acid (standard tyrosinase inhibitor: IC50 =16.67μM). 

In addition, the Lignan 5 exhibited a more potent activity compared with L-mimosine 

(IC50 = 3.68μM). In Figure 10 are depicted the molecular structures of the compounds. 

Table 7 comes about here (see end of the document) 

Figure 10 comes about here (see end of the document) 

It is important to stand out here, which the family employed in this study consists of 

structural core not present in the active database. These results exemplify how the current 

algorithm can be used for the selection/identification of novel lead tyrosinase-inhibitor 

compounds. Therefore, these compounds can be taken as hits and selected for a further 

chemistry optimization, improving the inhibitory activity and the rest of the ADMET 

properties.  To this effect, this series of compounds with these structural features could be 

used to act as a potential lead molecule in the treatment of any disorders associated with 

tyrosinase inhibitory activity. 

 

CONCLUSIONS 

During the last decades, one of the researches involving the tyrosinase enzyme has 

been focused on the search for novel tyrosinase-inhibitor compounds. The wide 

distribution of this enzyme in the phylogenetic tree makes possible its wide use in 

pharmaceutical, food, agricultural chemistry and so on. For instance, in human beings 

this enzyme plays an important role in hyperpigmentation and melanogenesis disorders. 
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However, until nowadays the search of compounds with anti-tyrosinase activity has been 

based in trial-error methods [54].  

Therefore, in silico screening can become a suitable tool in the development of drug 

discovery, capable of solving the ancient problem of large database query from a 

determined activity. Consequently, the QSAR models, together with HTS, can highlight 

the potential for new applications of in silico techniques, in the selective assessment by 

screening of a vast number of molecules against the tyrosinase inhibitory activity, 

reducing the in vitro tests.  

Following this aim, in the present report we proposed a new set of molecular 

descriptors, namely non-stochastic and stochastic bond-based quadratic indices, as well 

as its application to the discrimination of the database of compounds, as either tyrosinase 

inhibitors or inactive substance. In addition, a virtual screening of compounds by using 

the QSAR models was carried out and showed adequate results. Finally, the in silico 

screening of a family of lignans and its experimental corroboration was developed. 

 This presented algorithm can effectively reduce the need to achieve a sufficient 

number of hits by increasing the speed in the selection/identification of new lead 

compounds. Hit finding, following these effective methods could be used to improve the 

search for novel depigmentation agents.  
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ANNEXES 
(Tables and Schemes to be Inserted in the Main Text) 

 
Table 1. Values of the Atomic Weights Used for Quadratic Indices Calculation.25-28 

ID Atomic Mass 
g/mol 

VdWa Volume 
Å3 

Mulliken 
Electronegativity 

Polarizability 
Å3 

Pauling 
Electronegativity 

H 1.01 6.709 2.592 0.667 2.2 
B 10.81 17.875 2.275 3.030 2.04 
C 12.01 22.449 2.746 1.760 2.55 
N 14.01 15.599 3.194 1.100 3.04 
O 16.00 11.494 3.654 0.802 3.44 
F 19.00 9.203 4.000 0.557 3.98 
Al 26.98 36.511 1.714 6.800 1.61 
Si 28.09 31.976 2.138 5.380 1.9 
P 30.97 26.522 2.515 3.630 2.19 
S 32.07 24.429 2.957 2.900 2.58 
Cl 35.45 23.228 3.475 2.180 3.16 
Fe 55.85 41.052 2.000 8.400 1.83 
Co 58.93 35.041 2.000 7.500 1.88 
Ni 58.69 17.157 2.000 6.800 1.91 
Cu 63.55 11.494 2.033 6.100 1.9 
Zn 65.39 38.351 2.223 7.100 1.65 
Br 79.90 31.059 3.219 3.050 2.96 
Sn 118.71 45.830 2.298 7.700 1.96 
I 126.90 38.792 2.778 5.350 2.66 
avan der Waals 
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Table 2. Main Results of the k-MCAs for Tyrosinase Inhibitor and Inactive Drug-like 
Compounds. 
Analysis of Variance 
Variables Between 

SSa 
Within 
SSb 

Fisher 
ratio (F) 

p-levelc 

Tyrosinase Inhibitors Clusters (k-MCA I) 
Mq5(x) 45.82 11.05 109.23 0.00 
Vq1(x) 265.71 42.40 165.02 0.00 
Vq0L(xE) 209.08 35.80 153.77 0.00 
Pq1

H(x) 20.41 4.21 127.62 0.00 
Kq3L

H(xE) 204.94 42.53 126.88 0.00 
Gq5

 H(x) 207.43 36.49 149.70 0.00 
Gq0L(xE) 343.72 65.75 137.66 0.00 
Gq1L(xE) 258.35 28.42 239.36 0.00 
Inactives Clusters (k-MCA II) 
Mq5(x) 1357.05 96.66 510.53 0.00 
Vq1(x) 265.87 82.04 117.84 0.00 
Vq0L(xE) 495.51 139.01 129.62 0.00 
Pq1

H(x) 448.54 82.38 197.99 0.00 
Kq3L

H(xE) 487.84 69.64 254.72 0.00 
Gq5

 H(x) 303.50 58.60 188.33 0.00 
Gq0L(xE) 311.16 55.16 205.13 0.00 
Gq1L(xE) 429.14 69.81 223.55 0.00 
aVariability between groups. 
bVariability within groups. 
cLevel of significance. 
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Table 3. Discriminant Models Obtained with Total and Local Non-Stochastic and 
Stochastic Bond-Based Quadratic Indices Used in This Study. 
LDA-Based QSAR Models Obtained Using Non-Stochastic Bond-Based Quadratic Indices 
 
Class = -0.259 +1.068x10-2 Mq0

H(w) -2.868x10-3 Mq1
H(w) -3.142x10-3 Mq0(w) +1.482x10-3 Mq1(w)  

             -3.761x10-6 Mq5(w) +4.800x10-12 Mq15(w) -1.672x10-2 Mq0L
H(wE) +7.041x10-3 Mq1L

H(wE)  
             +9.082x10-3 Mq0L(wE) -6.268x10-3 Mq1L(wE) +9.588x10-5 Mq3L(wE)                                                (3)     
 
Class = -0.902 -2.631x10-3 Vq0

H(w) +2.141x10-3 Vq1
H(w) -1.076x10-4 Vq3

H(w) -9.834x10-7 Vq6
H(w) 

             +6.289x10-13 Vq15
H(w) -6.570x10-4 Vq0(w) +1.088x10-3 Vq1(w) +2.237x10-6 Vq6L

H(wE)  
             -4.913x10-13 Vq15L

H(wE) +1.881x10-3 Vq0L(wE) -2.219x10-3 Vq1L(wE) -5.055x10-8 Vq8L(wE)           (4)       
                                                                                           
Class = -0.207 -1.925x10-2 Pq1

H(w) -2.845x10-7 Pq10
H(w) +8.955x10-11 Pq15

H(w) -0.146 Pq2(w) 
             +0.108 Pq3(w) -5.582x10-3 Pq5(w) +4.786x10-7 Pq11(w) -4.647x10-10 Pq15(w) -0.207 Pq1L(wE) 
             +2.894x10-2 Pq2L(wE)                                                                                                                     (5) 
                                                                                                                              
Class = -0.743 +4.671x10-5 Kq5(w) -0.185 Kq0L

H(wE) +0.128 Kq1L
H(wE) +5.546x10-2 Kq2L

H(wE)  
             -3.725x10-2 Kq3L

H(wE) +4.781x10-3 Kq4L
H(wE) +0.116 Kq0L(wE) -5.687x10-2 Kq1L(wE)  

             -1.800x10-3 Kq3L(wE)                                                                                                                     (6) 
               
Class = -0.869 -1.441 Gq5

H(w) +4.098x10-9 Gq11
H(w) +1.723x10-2 Gq1(w) +8.038x10-5 Gq5(w)                             

             -0.217 Gq0L
H(wE) +0.145 Gq1L

H(wE) +5.870x10-2 Gq2L
H(wE) -3.860x10-2 Gq3L

H(wE)  

                   +5.675x10-3 Gq4L
H(wE) +0.132 Gq0L(wE) -9.129x10-2 Gq1L(wE) -8.556x10-4 Gq4L(wE)                   (7)     

 
Class = -1.054 +1.089x10-6 Mq5(w) +3.189x10-4 Vq1(w) -1.848x10-3 Vq0L(wE) -1.832x10-2 Pq1

H(w) 
             -2.050x10-3 Kq3L

H(wE) -5.131x10-5 Gq5
H(w) +0.140 Gq0L(wE) -3.375x10-2 Gq1L(wE)                     (8)   

                                                                              
LDA-Based QSAR Models Obtained Using Stochastic Bond-Based Quadratic Indices 
 
Class = -0.554 -4.436x10-2 Mq5

H(w) +4.499x10-2 Mq8
H(w) -4.467x10-3 Mq1(w) +5.007x10-3 Mq6(w) 

             -6.296x10-3 Mq0L
H(wE) +2.291x10-3 Mq1L

H(wE) +5.328x10-2 Mq5L
H(wE) -4.981x10-2 Mq8L

H(wE)  
             +6.024x10-3 Mq0L(wE) -4.707x10-3 Mq8L(wE) -1.118x10-2 Mq9L(wE) +9.524x10-3 Mq11L(wE)          (9)      
 
Class = -0.321 -4.726x10-3 Vq0

H(w) -3.297x10-2 Vq2
H(w) +3.921x10-2 Vq4

H(w) -9.564x10-4 Vq0(w) 
             +2.259x10-3 Vq15(w) -4.954x10-3 Vq1L

H(wE) +2.885x10-2 Vq2L
H(wE) -8.300x10-2 Vq7L

H(wE)   
             +5.641x10-2 Vq8L

H(wE) +2.230x10-3 Vq0L(wE) -3.201x10-3 Vq2L(wE)                                              (10) 
 
Class = -0.689 +0.645 Pq0

H(w) -3.048 Pq2
H(w) +1.997 Pq4

H(w) +0.602 Pq15
H(w) -0.231 Pq0(w) 

             +0.229 Pq14(w) -0.924 Pq0L
H(wE) +2.302 Pq2L

H(wE) -1.538 Pq11L
H(wE) +0.519 Pq0L(wE)  

             -0.234 Pq1L(wE) -0.378 Pq2L(wE)                                                                                                    (11)      
                                                                                                                              
Class = -1.278 -0.205 Kq0

H(w) -1.393 Kq3
H(w) +1.164 Kq4

H(w) +0.450 Kq15
H(w) +4.829x10-2 Kq14(w)   

             +0.618 Kq2L
H(wE) -0.687 Kq10L

H(wE) +9.772x10-2 Kq0L(wE) +7.486x10-2 Kq1L(wE)  
             -0.229 Kq3L(wE)                                                                                                                             (12)  
    
Class = -1.235 -0.236 Gq0

H(w) -1.619 Gq3
H(w) +1.346 Gq4

H(w) +0.519 Gq15
H(w) +5.781x10-2 Gq14(w)  

             +0.719 Gq2L
H(wE) -0.783 Gq10L

H(wE) +0.113 Gq0L(wE) +9.073x10-2 Gq1L(wE) -0.272 Gq3L(wE)      (13)    
 
Class = -0.285 -8.339x10-3 Vq0(w) +1.482x10-2 Vq2L

H(wE) +1.225 Pq0(w) -0.683 Pq0L
H(wE)  

             -1.227 Pq2L
H(wE) +0.517 Pq11L

H(wE) -0.335 Pq2L(wE) -0.124 Kq0L(wE) +9.174x10-2 Gq14(w)  
             -0.260 Gq10L

H(wE) -0.150 Gq3L(wE)                                                                                                (14) 
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Table 4. Prediction Performances and Statistical Parameters for LDA-based QSAR 
Models in the Training Set.  
Modelsa Matthews 

Corr. 
Coefficient (C) 

Accuracy 
‘QTotal’ 

(%) 

Specificity
(%) 

 

Sensitivity
‘hit rate’

(%) 

False 
positive
Rate (%)

Wilks’ 
λ 

D2 F Chi-Sqr
(χ2) 

Canonical
R(Rcan)

b 

LDA-Based QSAR Models Obtained Using Non-Stochastic Quadratic Indices 
Eq. 3 (12) 0.81 90.78 86.4 90.2 8.8 0.48 4.58 42.1 376.4 0.74 
Eq. 4 (12) 0.73 87.24 86.3 79.2 7.8 0.55 3.46 31.8 281.6 0.67 
Eq. 5 (10) 0.76 88.49 82.7 88.5 11.5 0.51 4.06 45.0 257.0 0.65 
Eq. 6 (9) 0.76 88.49 83.7 86.9 10.5 0.49 4.35 53.7 334.6 0.71 
Eq. 7 (12) 0.75 87.87 82.1 87.4 11.9 0.48 4.58 42.2 346.0 0.72 
Eq. 8 (8) 0.86 93.51 91.8 91.3 5.1 0.41 5.99 83.3 417.1 0.77 

 
LDA-Based QSAR Models Obtained Using Stochastic Quadratic Indices 

Eq. 9 (12) 0.71 85.98 79.6 85.2 13.6 0.55 3.45 31.7 281.2 0.67 
Eq. 10 (11) 0.72 86.40 79.8 86.3 13.6 0.53 3.70 37.2 296.5 0.68 
Eq. 11 (12) 0.69 85.56 82.0 79.8 10.8 0.59 2.98 27.4 251.5 0.64 
Eq. 12 (10) 0.77 89.12 83.9 88.5 10.5 0.48 4.60 51.0 347.8 0.72 
Eq. 13 (10) 0.78 89.33 84.0 89.1 10.5 0.48 4.62 51.2 348.6 0.72 
Eq. 14 (11) 0.82 91.21 87.3 90.2 8.1 0.44 5.31 53.4 383.7 0.75 
a Between parenthesis the quantity of variables of the models. 
b Canonical correlation coefficient obtained from the linear discriminant canonical analysis 
 
 
Table 5. Prediction Performances for LDA-Based QSAR Models in the Test Set. 
Models Matthews Corr. 

Coefficient (C) 
Accuracy 

‘QTotal’ (%) 
Specificity

(%) 
Sensitivity 

‘hit rate’ (%) 
False positive 

Rate (%) 
LDA-based QSAR Models Obtained Using Non-Stochastic Bond-Based Quadratic Indices 

Eq. 3 0.81 91.11 85.1 90.5 8.5 
Eq. 4 0.67 85.00 80.0 76.2 10.3 
Eq. 5 0.72 86.67 76.7 88.9 14.5 
Eq. 6 0.72 86.11 75.0 90.5 16.2 
Eq. 7 0.66 83.30 72.0 85.7 17.9 
Eq. 8 0.79 90.00 81.7 92.1 11.1 

 
LDA-based QSAR Models Obtained Using Stochastic Bond-Based Quadratic Indices 

Eq. 9 0.71 86.10 76.4 87.3 14.5 
Eq. 10 0.71 85.56 74.0 90.5 17.1 
Eq. 11 0.61 82.22 75.4 73.0 12.8 
Eq. 12 0.74 87.78 79.7 87.3 12.0 
Eq. 13 0.70 85.56 75.3 87.3 15.4 
Eq. 14 0.78 89.44 80.6 92.1 12.0 
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Table 6. Results for the Virtual Screening of Tyrosinase Inhibitors. 
Compounda Classb Ref.c Compounda Classb Ref.c 

1 p-nitrophenol +-++++ 
++++++ 

A 
B 

27 Dithiothreitol ++-+++ 
++++++ 

O 

2 3-(3,4-dihydroxyphenyl)-l-alanine ++++++ 
++++++ 

C 28 Azelaic acid +-++++ 
-+-+++ 

P 

3 3-amino-4-hydroxybenzoic acid ++++++ 
++++++ 

C 29 Undecandioic acid +-++++ 
-+++++ 

P 

4 4-amino-3-hydroxybenzoic acid ++++++ 
++++++ 

C 30 Suberic acid +-++++ 
-+-+++ 

P 

5 3,4-diaminobenzoic acid ++++++ 
++++++ 

C 31 Sebacic acid +-++++ 
-+++++ 

P 

6 3-aminobenzoic acid ++++++ 
++++++ 

C 32 Dodecandioic acid +-++++ 
++++++ 

P 

7 4-aminobenzoic acid ++++++ 
++++++ 

C 33 Tridecandioic acid +-++++ 
++++++ 

P 

8 4,6-O-hexahydroxy 
    diphenylglucose 

+--+-+ 
++++++ 

D 34 Traumatic acid +-++++ 
++++++ 

P 

9 Tunicamycin  +--+++ 
++++++ 

E 35 Pantothenic acid ++++++ 
++++++ 

K 

10 methyl p-coumarate  ++++++ 
++++++ 

F 36 5-(hydroxymethyl)-2-furfural  ++++++ 
+--+++ 

Q  
R 

11 o-phenylphenol ++++++ 
++++++ 

F 37 Hinokitiol ++++++ 
++-+++ 

S 

12 Phenylhydroquinone ++++++ 
++++++ 

F 38 Penicillamine ++++++ 
++++++ 

T 

13 Chamaecin ++++++ 
++---+ 

F  
G 

39 Toluic acid ++++++ 
++++++ 

A 

14  Stearyl glycyrrhetinate ++++++ 
++++++ 

H 40  ++++++ 
++++++ 

U 

15 2-(4-Methylphenyl)- 
      1,3-selenazol-4-one 

+++--+ 
------ 

I 
J 

41  ++++++ 
++++++ 

U 

16  -++--+ 
------ 

I 42 3,5-dihydroxy- 
     4´-O-methoxystilbene 

++++++ 
++++++ 

V 

17  -++--+ 
------ 

I 43 p-hydroxybenzoic acid ++++++ 
++++++ 

W 

18  +-+--- 
------ 

I 44 o-hydroxybenzoic acid ++++++ 
++++++ 

W 

19 3-fluorotyrosine ++++++ 
++++++ 

K 45 Cysteine ++-+++ 
++++++ 

X 

20 N-acetyltyrosine  --+--+ 
-+-+++ 

K 46 Methimazole  +----- 
+----+ 

X 

21 N-formyltyrosine +-++++ 
++++++ 

K 47 BMY-28438 ++++++ 
++++++ 

X 

22 Gentisic acid ++++++ 
++++++ 

L 48 Captopril +--++- 
+----+ 

Y 

23 6-BH4 -----+ 
+----+ 

M 49 Yohimbine +-++-+ 
++++++ 

Z 

24 7-BH4 -----+ 
+----+ 

M 50 4-(phenylazo)phenol ++++++ 
++++++ 

a 

25 Propylparaben ++++++ 
++-+++ 

N 51 SACat ++++++ 
++++++ 

a 

26 Phenylalanine ++++++ 
++++++ 

K 52 NPACat ++++++ 
++++++ 

a 
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Table 6. Cont.  
Compounda Classb Ref.c Compounda Classb Ref.c 

53 DNPACat ++++++ 
++++++ 

a 70  ++++++ 
++-+++ 

d 

54 EDTA -----+ 
------ 

b 71  ++++++ 
++++++ 

d 

55 Dodecyl gallate ++++++ 
++++++ 

c 72  ++++++ 
++-+++ 

d 

56 Gallic acid ++++++ 
++++++ 

c 73  ++++++ 
++++++ 

d 

57 (+)-flavanone  +++--+ 
-++--+ 

d 74  ++++++ 
++++++ 

d 

58 (-)-pinocembrin ++++++ 
++++++ 

d 75  ++++++ 
++++++ 

d 

59 (+)-naringenin ++++++ 
++++++ 

d 76  ++++++ 
++++++ 

d 

60 (+)-dihydromorin ++++++ 
++++++ 

d 77  ++++++ 
++++++ 

d 

61 Flavone +++--+ 
-++--+ 

d 78  ++++++ 
++++++ 

d 

62 Myricetin ++++++ 
++++++ 

d 79  ++++++ 
++++++ 

d 

63 Artocarpin ++++++ 
++++++ 

d 80  ++++++ 
+--+++ 

d 

64 Artocarpesin ++++++ 
++++++ 

d 81  ++++++ 
++++++ 

d 

65 Isoartocarpesin ++++++ 
++++++ 

d 82  ++++++ 
++-+++ 

d 

66 (-)-Angolensin ++++++ 
++++++ 

d 83  ++++++ 
++-+++ 

d 

67 Pinosylvin ++++++ 
++++++ 

d 84 2´-O-feruloylaloesin ++++++ 
++++++ 

e 

68 4-prenyloxyresveratrol ++++++ 
++++++ 

d 85 Barbaloin ++++++ 
++++++ 

e 

69  ++++++ 
++++++ 

d    

aThe molecular structures of these tyrosinase inhibitors is given as Supplementary Data (see Table 11). bResults of the classification of 
compounds in this set: (i) Above, classification of each compounds using the obtained models with non-stochastic bond-based 
quadratic indices in the following order:  Eq. 3, 4, 5, 6, 7 and 8; and (ii) Below; classification of each compounds using the obtained 
models with stochastic bond-based quadratic indices in the following order Eq. 9, 10, 11, 12, 13, and 14.cReferences taken from the 
literature: ABubacco, L.; van Gastel, M.; Groenen, E. J. J.; Vijgenboom, E.; Canters, G. W. J. Biol. Chem. 2003, 278, 7381–7389. Bvan 
Gastela, M.; Bubaccob, L.; Groenena, E. J. J.; Vijgenboomc, E.; Cantersc, G. W. FEBS Lett. 2000, 474, 228-232. CGasowskaa, B.; 
Kafarskia, P.; Wojtasek, H. Biochim. Biophys. Acta. 2004, 1673, 170–177. D http://open.cacb.org.tw/index.php (2005-03-03 09:09:51). 
ETakahashi, H.; Parsons, P. G. J. Invest. Dermatol. 1992, 98, 481-487. FKubo, I.; Niheia, K.; Tsujimoto, K. Bioorg. Med. Chem. 2004, 
12, 5349–5354. GNihei, K-I.; Yamagiwa, Y.; Kamikawab, T.; Kubo, I. Bioorg. Med. Chem Lett. 2004, 14, 681–683. HUm, S-J.; Park, 
M-S.; Park, S-H.; Han, H-S.; Kwonb, Y-J.; Sin, H-S.  Bioorg. Med. Chem. 2003, 11, 5345–5352. IBarlocco, D.; Barrett, D.; Edwards, 
P.; Langston, S.; Pérez-Pérez, M. J.; Walker, M.; Weidner, J.; Westwell, A. Drug Disc. Today. 2003, 8, 372-373. JKoketsu, M.; Choi, 
S.Y.; Ishihara, H.; Lim B. O.; Kim, H.; Kim, S., Y. Chem. Pharm. Bull. (Tokyo). 2002, 12, 1594-1596. 
http://www.thecosmeticsite.com/formulating/959621.htlm (April-00). LCurto, E. V.; Kwong, C.; Hermersdorfer, H.; Glatt, H.; Santis, 
C.; Virador, V.; Hearing, V. J.; Dooley, T. P. Biochem. Pharmacol. 1999, 57, 663–672. MWood, J. M.; Schallreuter-Wood, K. U.; 
Lindsey, N. J.; Callaghan, S.; Gardner, M. L. G  Biochem. Biophys. Res. Commun. 1995, 206, 480–485. NHori, I.; Nihei, K-I.; Kubo, I. 
Phytother. Res. 2004, 18, 475–479. ONaish-Byfield, S.; Cooksey, C. J.; Riley, P. A. Biochem. J. 1994, 304, 155–162. PNazzaro-Porro, 
M.; Passi, S. J. Invest.  Dermatol. 1978, 71, 205-208. QSharma, V. K.; Choi, J.; Sharma, N.; Choi, M.; Seo, S-Y. Phytotherapy Res. 
2004, 18, 841-844. RKang, H. S.; Choi, J. H.; Cho, W. K.; Park, J. C.; Choi, J. S. Arch Pharm Res. 2004, 7, 742-50. SSakuma, K.; 
Ogawa, M.; Sugibayashi, K.; Yamada, K.; Yamamoto, K. Arch Pharm Res. 1999, 4, 335-339. TLovstad, R. A. Biochem. Pharmacol. 
1976, 25, 533-535. UKubo, I.; Kinst-Hori, I.; Yokokawa, Y. J. Nat. Prod. 1994, 57, 545-551. VRegev-Shoshani, G.; Shoseyov, O.; 
Bilkis, I.; Kerem, Z. Biochem. J. 2003, 374, 157–163. WBernard, P.; Berthon, J-Y. Int. J. Cosmetic Sci. 2000, 22, 219-226. XImada, C.; 
Sugimoto, Y.; Makimura, T.; Kobayashi, T.; Hamada, N.; Watanabe, E. Fish. Sci. 2001, 67, 1151–1156. YEspín, J. C.; Wichers, H. J. 
Biochim. Biophys. Acta. 2001, 1544, 289-300. ZFuller, B. B.; Drake, M. A.; Spaulding, D. T.; Chaudry, F. J. Invest.  Dermatol. 2000, 
114, 268-276. aBorojerdi, S. S.; Haghbeen, K.; Karkhane, A. A.; Fazli, M.; Sabouryc, A. A. Biochem. Biophys. Res. Commun. 2004, 
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314, 925–930. bKong, K-H.; Hong, M-P.; Choi, S-S.; Kim, Y-T.; Cho, S-H. Biotechnol. Appl. Biochem. 2000, 31, 113–118. cKubo, I.; 
Chen, Q-X.; Nihei, K-I. Food Chem. 2003, 81, 241-247. dShimizu, K.; Kondo, R.; Sakai, K. Planta Medica. 2000, 66, 11-15. eYagi, 
A.; Kanbara, T.; Morinobu, N. Planta Medica. 1987, 515-517.  
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Table 7. Results for Ligand-Based in silico Screening and Tyrosinase Inhibitory Activities of New Lignans. 
Compound* ΔP%a Scoresa ΔP%b Scoresb ΔP%c Scoresc ΔP%d Scoresd ΔP%e Scorese ΔP%f Scoresf IC50 ±SEMg ( μM) 

93,98 -1,25 85,01 1,83 64,55 1,29 95,62 2,05 94,85 1,91 96,22 -1,82  Lignan 1  
94,41 2,11 93,31 1,95 85,01 -1,93 94,93 -1,91 94,61 -1,86 87,17 1,36 

10.06±1.064 

99,88 -2,24 57,74 1,18 53,30 1,13 99,92 3,97 99,87 3,64 99,91 -3,34 Lignan 2 
99,78 3,86 97,81 2,55 96,19 -2,76 99,94 -3,97 99,94 -3,97 99,71 3,03 

6.72±0.652 

99,38 -1,83 50,46 1,07 54,37 1,10 99,42 3,02 99,05 2,71 99,62 -2,76 Lignan 3  
98,92 3,00 97,72 2,52 95,27 -2,63 99,64 -3,16 99,64 -3,14 98,93 2,47 

7.81±1.0971 

97,28 -1,55 92,40 2,21 78,82 1,40 94,87 1,97 95,09 1,93 97,78 -2,04 Lignan 4  
95,94 2,28 97,04 2,39 91,79 -2,30 98,19 -2,40 98,10 -2,36 91,70 1,56 

9.76±1.1024 

99,92 -2,26 58,48 1,19 23,16 0,93 99,95 4,19 99,90 3,77 99,94 -3,52 Lignan 5 
99,85 4,05 97,13 2,40 96,05 -2,74 99,86 -3,61 99,87 -3,61 99,76 3,12 

3.21±0.1654 

93,29 -1,00 59,50 1,21 37,78 0,75 70,89 1,07 61,81 0,89 90,45 -1,43 Lignan 6 
82,08 1,44 64,25 1,00 70,31 -1,49 43,19 -0,64 42,81 -0,62 94,37 1,74 

15.13±1.9521 

97,46 -1,28 76,11 1,55 -34,37 0,49 87,48 1,52 79,52 1,23 95,18 -1,72 Lignan 7 
94,26 2,09 47,36 0,74 75,06 -1,61 45,55 -0,67 44,86 -0,65 95,59 1,85 

5.61±0.3551 

*The molecular structures of these chemicals are shown in Figure 10. a,b,c,d,e,fΔP% = [P(Active) - P(Inactive)]x100 as well as canonical scores of each 
compound in this set: (i) Above in bold, classification of each compound using the obtained models with non-stochastic linear indices in the following order:  
Eqs. 3, 4, 5, 6, 7, and 8; and (ii) Below in italic; classification of each compound using the obtained models with stochastic linear indices in the following order 
Eqs. 9, 10, 11, 12, 13, and 14. gIC50 are the 50% inhibitory concentrations against the enzyme tyrosinase and SEM is the standard error of the mean.
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Figure 1. Random, but not exhaustive sample of the molecular families of tyrosinase 
inhibitors studied here and some reference drugs. 
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Figure 2. A dendrogram illustrating the results for the hierarchical k-NNCA of the set of 
tyrosinase inhibitors used in the training and prediction set of the present work. 

 

 
 
Figure 3. A dendrogram illustrating the results for the hierarchical k-NNCA of the set of 
inactive compounds (non-tyrosinase inhibitors) used in the training and prediction set of 
the present work. 
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Figure 4. General algorithm used to design training and test sets through k-MCA. 
 

 
 
Figure 5. Plot of the ΔP% from Eq. 8 (using non-stochastic quadratic indices) for each 
compound in the training and test sets. Compounds 1-183 and 184-246 are active 
(tyrosinase inhibitors) in training and test sets, respectively; chemicals 247-541 and 542-
658 are inactive (non-tyrosinase inhibitors) in training and test sets, correspondingly. 
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Figure 6. Plot of the ΔP% from Eq. 14 (using stochastic quadratic indices) for each 
compound in the training and test sets. Compounds 1-183 and 184-246 are active 
(tyrosinase inhibitors) in training and test sets, respectively; chemicals 247-541 and 542-
658 are inactive (non-tyrosinase inhibitors) in training and test sets, correspondingly. 
 

 
 
Figure 7. A dendrogram illustrating the results for the hierarchical k-NNCA of the set of 
active chemicals used for evaluating the predictive ability of the QSAR models for 
ligand-based virtual screening. 
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Figure 8. Plot of the ΔP% from Eq. 8 (using non-stochastic bond-based quadratic 
indices) for each compound selected in virtual screening protocols. 
 

 
 
Figure 9. Plot of the ΔP% from Eq. 14 (using stochastic bond-based quadratic indices) 
for each compound selected in virtual screening protocols. 
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Figure 10. Molecular structure of the new lignans identified as hit via virtual screening. 
 
 
 
 




