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Abstract: To estimate the spatial and temporal distribution of aerosol optical depth (AOD), we used 

the optimal interpolation (OI). In OI, observational data and a model forecast are linearly combined 

according to their relative accuracies. Weight coefficients are chosen to minimize the mean-square 

error in the estimate. To obtain weight coefficients, correlations between model errors in the differ-

ent grid points are used. In the classical OI, only spatial correlations are considered. We used spatial 

and temporal correlation functions. To obtain error statistics, we used observations from European 

stations of the ground-based sun photometers Aerosol Robotic Network (AERONET) and simula-

tions by a chemical transport model GEOS-Chem, assuming a negligible error of AERONET AOD 

observations. The estimates of the daily mean AOD distribution over Europe are obtained. The re-

duction of the root-mean-square error of the AOD estimate based on the OI method in comparison 

with the GEOS-Chem model results is discussed. 
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1. Introduction 

Atmospheric aerosol has a considerable impact on air quality and climate. One of 

important characteristics of atmospheric aerosol is aerosol optical depth (AOD), which is 

a measure of light extinction by aerosol. The atmospheric column integrated aerosol load 

can be derived from AOD observations. A global ground-based network of sun and sky 

photometers Aerosol Robotic Network (AERONET) provides AOD data with low uncer-

tainty [1–5]. However, AERONET observations are sparse in space and time. Chemical 

transport models can fill in observational gaps. Model simulations provide values of AOD 

at all cells of a regular grid over the domain of interest. A variety of models is used to 

describe aerosol optical properties including AOD [6–10]. The drawback of models is a 

large uncertainty. To obtain a likely true estimate of the spatial and temporal distribution 

of AOD, data assimilation can be applied. Data assimilation is a technique of combining 

observational data with model simulations outputs. Data assimilation approaches are 

commonly divided into optimal interpolation (OI) [11–13], Kalman filtering (KF) [14–16], 

and variational methods [17–19]. All of these approaches are based on the minimum 

mean-square error principle of the estimation theory. Each method has advantages and 
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disadvantages depending on specific applications. OI estimates a value of interest in a 

grid point through a weighted linear combination of observational and modeled data at 

the point in question and neighboring observational points, according to the accuracies of 

the data used. Weighting coefficients are chosen to minimize the mean-square error in the 

estimate. To obtain weighting coefficients, correlations between model errors in the dif-

ferent grid points are used. A single correlation function is estimated from available data 

assuming homogeneity and isotropy of the field. The model error statistics is assumed to 

be stationary. KF is a sequential data assimilation scheme. KF is a two step process: the 

forecast and the analysis. The forecast is made using a dynamical model, in which the 

estimate obtained in a previous time step is incorporated. The analysis is the same as OI. 

A forecast error covariance updated in every time step is used instead of a single model 

error covariance. This allows reducing the mean-square error in the estimate in compari-

son with OI. However, if the temporal gaps are present in the observational data, there is 

not improvement in comparison with OI, because the values being estimated converge 

too quickly to the model trajectory [20]. Variational methods are based on minimising an 

objective function proportional to the square of the distance between the estimate and 

both the model and the observations. Under some commonly used assumptions, the three-

dimensional variational method (3D-Var) is equivalent to OI [21]. Difference is only in the 

method of solution. In the four-dimensional variational approach (4D-Var), the minimi-

zation of the objective function is carried out over a time window. The numerical cost of 

4D-Var is very high. OI is much less computationally expensive than KF and 4DVar meth-

ods. 

In the classical OI, only spatial correlations are considered. The method can be ex-

tended to include time dimension by using spatial and temporal correlations. The use of 

spatio-temporal optimal interpolation (STOI) allows filling in not just spatial, but also 

temporal gaps in observations, and improving accuracy of the method. STOI was used in 

ocean sciences in works [22,23]. In [24] we used STOI combining AERONET observations 

and chemical transport model GEOS-Chem [25,26] calculations, for the estimation of the 

distribution of AOD at 870 nm over the East European region. In the present work, we 

assimilated AERONET AOD at the wavelengths of 440, 675, and 870 nm using STOI to 

obtain the distribution of total AOD over Europe. 

2. Materials and Methods 

2.1. AERONET Observations 

One of the widely used sources of atmospheric aerosol data is observations by a 

ground-based network of sun and sky photometers AERONET. The network consists of 

more than 500 sites located throughout the world. Photometers provide measurements of 

direct solar and diffused sky radiation at a number of wavelengths. The AERONET re-

trieval algorithm [3] derives AOD and other integrated aerosol properties from direct and 

diffuse radiation measurements. AERONET observations are often considered as a stand-

ard for the column aerosol properties. An uncertainty of AERONET observations of AOD 

is about 0.01 for wavelengths > 440 nm [4,5]. In this paper, we used AERONET Version 3, 

Level 2 (cloud-screened and quality-assured) daily averaged total AOD data. 

2.2. GEOS-Chem Simulation 

GEOS-Chem is a global three-dimensional chemical transport model. The GEOS-

Chem model is developed and used by research groups worldwide as it is applicable to a 

broad range of atmospheric composition problems. The model input includes meteoro-

logical data and inventories of emissions. The archived meteorological fields are from the 

Goddard Earth Observing System (GEOS) [27]. GEOS-Chem uses the Harvard–NASA 

Emissions Component (HEMCO) [28] to calculate emissions from different databases. The 

model output is a set of quantities such as tracer concentrations in every grid cell and 

others including AOD of major aerosol components at a number of wavelengths with a 
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transport time step of 15 min. For calculating AOD, GEOS-Chem combines aerosol species 

into groups according to their optical properties: sulphate-nitrate-ammonium; size frac-

tions of mineral dust; sea salt in accumulation and coarse modes; black carbon; organic 

aerosols. 

In the present work, we used a nested regional application of the GEOS-Chem ver-

sion v12.1.1. The simulation was performed at 0.25° latitude x 0.3125° longitude horizontal 

resolution and 47 vertical σ-layers up to ~80 km. We calculated daily averaged AOD at 

440, 675, and 870 nm as these are standard reference wavelengths in AERONET products. 

Optical depths of above-mentioned individual aerosol groups in every 3D grid cell were 

summarized to obtain the optical depth of the total aerosol in the cell. The optical depths 

of the total aerosol in every vertical layer for the given horizontal grid cell were summa-

rized to yield the total column AOD. 

2.3. Spatio-Temporal Optimal Interpolation 

In the OI scheme, an analyzed state is related to the forecast state by the equation: 

)]([ bba
xHyKxx −+= , (1) 

1TT )( −+= RHBHBHK , (2) 

were xa is a vector containing estimated values at regular grid points, xb is a vector con-

taining values calculated by a model at regular grid points, y is a vector containing values 

of observations at the observational points, K is a matrix containing weighting coeffi-

cients, H is an observation operator providing the link between the analysis variables and 

the observations, B is a covariance matrix of model errors, R is a covariance matrix of 

observational errors. The matrix of weighting coefficients K is to be determined by mini-

mizing the mean-square error in the estimate. Equations (1) and (2) define the optimal 

linear estimator under the assumption that the errors are unbiased, the observational er-

rors are uncorrelated, and observational and model errors are mutually uncorrelated. In 

OI, not all available observations are considered but only those lying in the vicinity of the 

point being updated. 

We applied STOI to estimate AOD in Europe in 2015–2016. We considered data from 

88 European AERONET sites. The layout of the region and location of the sites are shown 

in Figure 1. 

 

Figure 1. Location of the Aerosol Robotic Network (AERONET) stations considered in the assimila-

tion scheme. In red there are marked the sites, which were chosen for validation. 
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As model AOD uncertainty [29] is significantly larger than AERONET AOD uncer-

tainty, we assumed the observations to be perfect. 

Prior to the implementation of the STOI, we compared GEOS-Chem simulated AOD 

with AERONET observations. The comparison revealed a bias of −0.032 for 440 nm, −0.025 

for 675 nm, and −0.024 for 870 nm. Moreover, the dispersion of AERONET AOD turned 

out to be significantly larger than that of GEOS-Chem simulated AOD for each wave-

length. To correct the discrepancy, we used linear regression. Then we applied STOI using 

the corrected values of GEOS-Chem simulated AOD. 

To implement STOI, a spatial and a temporal correlation functions should be known. 

We obtained correlation curves by fitting them to the points presenting correlation coeffi-

cients of the model-minus-observation pairs of AOD at two spatial or temporal locations 

depending on the distance between them. Then we modelled the obtained correlation 

curves by analytic functions. We choose exponential functions with argument kd where 

for the spatial correlation function, d is the distance in kilometres, k = 0.002 for 440 nm, 

0.0025 for 675 nm, and 0.003 for 870 nm; for the temporal correlation function, d is the time 

interval in days, k = 0.4 for 440 nm, 0.45 for 675 nm, and 0.5 for 870 nm. The separability 

of spatial and temporal correlations is assumed. 

3. Results and Discussion 

Using STOI, we obtained the estimate of the distribution of the daily averaged AOD 

in Europe for 2015–2016. To validate the results, we compared them with independent 

AERONET observations. We excluded AERONET sites Granada, Lille, and Minsk (see 

Figure 1) from the assimilation scheme and performed STOI for July 2015 using data from 

85 remaining sites. We obtained estimates of AOD at each of the excluded sites and calcu-

lated root-mean-square errors of the estimates using AOD observations at those sites as-

suming a negligible error of AERONET AOD observations. Then we calculated root-

mean-square errors of model-simulated AOD at those sites. The results of the comparison 

are shown in the Table 1. 

Table 1. Root-mean-square errors of the aerosol optical depth (AOD) calculated using GEOS-Chem 

and assimilated using spatio-temporal optimal interpolation (STOI) as compared to AOD observed 

by AERONET. 

Wavelength 

nm 

Granada Lille Minsk 

GEOS-Chem STOI GEOS-Chem STOI GEOS-Chem STOI 

440 0.127 0.046 0.091 0.055 0.090 0.068 

675 0.113 0.034 0.057 0.032 0.047 0.036 

870 0.111 0.034 0.046 0.023 0.032 0.026 

The comparison shows that averaged over three wavelengths reduction in root-

mean-square error of the estimate after STOI is 68% for Granada, 45% for Lille, and 22% 

for Minsk. The best improvement among those three sites is achieved for Granada. This is 

due to the presence of a number of AERONET stations located close to Granada, and the 

large errors in the GEOS-Chem calculations for Granada during the period under consid-

eration. A relatively poor improvement occurs for Minsk. The East-European region is 

characterized by sparse observations. The dominant source of errors in assimilated AOD 

in this region arises from uncertainties in model results. 

Generally, STOI is a computationally efficient technique able to decrease the errors 

significantly in comparison with the model calculation. 
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