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ABSTRACT 
 

Bond-extended stochastic and non-stochastic bilinear indices are introduced in this 
paper as novel bond-level molecular descriptors (MDs). These novel totals (whole-
molecule) MDs are based on a bilinear maps (forms) similar to use defined in linear 
algebra. The proposed non-stochastic indices try to match molecular structure provided 
by the molecular topology by using the kth Edge(Bond)-Adjacency Matrix (Ek, designed 
here as non-stochastic E matrix). The stochastic parameters are computed by using the 
kth stochastic edge-adjacency matrix, ESk, as matrix operators of bilinear 
transformations. This new edge (bond)-adjacency relationships can be obtained directly 
from Ek and can be consider like a new matrix-transformation strategic to obtain new 
relation for a molecular graph. In both set of MDs, chemical information is codified by 
using different pair combinations of atomic weightings (in this case four atomic-labels: 
atomic mass, polarizability, van der Waals volume, and electronegativity). In addition, a 
local-fragment (bond-type) formalism was also developed. The kth bond-type bilinear 
indices are calculated by summing the kth bond bilinear indices of all bonds of the same 
bond type in the molecules. The new set of MDs can be easily and quickly calculate in 
our in house software TOMOCOMD-CARDD (TOpological MOlecular COMputer 
Design Computer-Aided –Rational– Drug Design). The reported application and 
utilization of these MDs for predictive capability correlations of structure with 
physicochemical and pharmacology properties are reviewed. Three benchmark datasets 
have been used to evaluate the QSPR/QSAR behavior of the new bond-level 
TOMOCOMD-CARDD MDs. We developed the QSPR models to describe several 
physicochemical properties of octane isomers (FIRST CASE) and, to analyze of the 
boiling point of 28 alkyl-alcohols (SECOND CASE) and to examine of the specific rate 
constant (log k), the partition coefficient (log P), as well as the antibacterial activity of 
34 derivatives of 2-furylethylenes (THIRD CASE). For these three rounds, the 
quantitative models found are significant from a statistical point of view and permit a 
clear interpretation of the studied properties in terms of the structural features of 
molecules. A leave-out-out cross-validation procedure revealed that the regression 
models had a good predictability. The comparison with other approaches reveals good 
performance of the method proposed. Therefore, it is clearly demonstrated that this 
suitability is higher than that shown by other 2D/3D well-known sets of MDs. The 
approach described here appears to be a very promising structural invariant, useful for 
QSPR/QSAR studies and shown to provide an excellent alternative or guides for 
discovery and optimization of new lead compounds, reducing the time and cost of 
traditional procedure. 
 
 
 
 
 
 
 
 
Keywords: Octane Isomers, Alkyl-alcohol, 2-Furylethylene, Physicochemical 
Properties, Antibacterial Activity, QSPR/QSAR Model, Multiple Linear Regression, 
Linear Drisciminant Analysis, Edge-Adjacency Matrix, Stochastic Edge-Adjacency 
Matrix, Non-Stochastic and Stochastic Bond-Based Bilinear Indices, TOMOCOMD-
CARDD Software.  
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Introduction 

In any process of molecular modelling (e.g., QSPR/QSAR studies, ligand-based 

virtual screening, and so on), the need for a representation of molecular structure is 

critical and its role is significant to find appropriate predictive models. An information-

rich representation which is rapidly computed and readily manipulated is essential.1 

This is the case of the so-called topological (as well as topo-chemical) indices (TIs), 

which are among the most useful molecular descriptors (MDs) known nowadays.2-6 TIs 

are “numerical values associated with chemical constitution for correlation of chemical 

structure with various physical properties, chemical reactivity or biological activity” and 

these MDs are parameters derived from graph-theoretical invariants.5,7,8 That is, they are 

numbers calculated from a molecular graph representing a molecule, which does not 

depend on the numbering of the graph vertices or edges.  

Several TIs have been introduced to date. A compilation by Todeschini and 

Consonni systematizes more than 1600 MDs for small-molecule drug discovery.9 There 

are two main sources of TIs, the Distance (D) and adjacency (A) matrices, but the 

number and diversity of graph invariants is so wide that this makes it difficult to find 

general relations for the indices so derived.10 However, some of these MDs are 

redundant in some way or have topics in common. For instance, many researchers 

define TIs for graphs by using vector-matrix-vector (VMV) procedures, a fact that 

indicates significant similarities between these systems.6,10 Indeed, the first TIs ever 

defined in a chemical context, the Wiener index (W)11 can be calculate by using the 

same mathematical formalism (VMV)12,13 that invariants based on the sum of vertex 

degrees products, e.g., Randic index;14 although there is no apparent relation between 

these invariants. In fact, several other TIs can be written in a VMV form and these 

include:9,13,15 
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All of the vectors and matrices used in equations 1-7 have been exhaustively 

explained in the literature and the reader can find further details there.5,6,9,15 Recently, 

new MDs also can been expressed by means of VMV form, such as the invariants 

reported by González-Díaz et al. in MARCH-INSIDE software, but it are based on 

Markov Chains theory.6,16  

More recently, one of present author (M–P, Y) also proposed new MDs by using a 

more elaborate approach in terms of algebraic space; witch from matrix point of view 

can also be expressed like VMV.17-22 Initially, three sets of MDs, namely atom-based 

non-stochastic and stochastic linear, quadratic and bilinear indices, were introduced; 

and they have been defined in analogy to the quadratic, linear and bilinear mathematical 

maps.19,21-23 The calculation of these novel sets of atom-level MDs can be carried out 

employing our in house TOMOCOMD-CARDD (acronym of TOpological MOlecular 

COMputer Design Computer-Aided –Rational– Drug Design)24 program, witch is an 
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interactive program for molecular design and bioinformatics research, developed upon 

the base of a user-friendly philosophy. The last defined MDs and introduced for QSAR 

and drug design studies were the so-called bilinear indices.21,25-27 These MDs are based 

on the calculation of bilinear maps (bilinear form) in ℜ n in canonical basis sets. The 

computation of the non-stochastic and stochastic bilinear indices is develop by using the 

kth “nonstochastic and stochastic graph–theoretical electronic-density matrices” Mk and 

Sk, correspondingly, as matrices of the mathematical forms.28-30 These matricial 

operators are graph-theoretical electronic-structure models, like the ‘‘extended Hückel 

MO model.’’ The M1 matrix considers all valence-bond electrons (σ- and π-networks) 

in one step, and their power k (k = 0, 1, 2, 3,...) can be considered as an interacting-

electronic chemical-network in step k. The present approach is based on a simple model 

for the intramolecular (stochastic) movement of all outer-shell electrons. The theoretical 

scaffold of these atom-based MDs and their use to represent small-to-medium size 

organic chemicals as well as QSAR and drug design studies has been explained in some 

detail elsewhere.21,25-27 

 On the other hand, relevant atom-based TOMOCOMD-CARDD MDs that also 

can be formulated via VMV procedure are the non-stochastic and stochastic quadratic 

indices,17,22,31-33 which were recently extended to bond(edge)-adjacency relationship 

codification, depicting better results than atom-level counterpart in several 

QSPR/QSAR studies.34 These new extended local (bond and bond-type) and total 

quadratic indices have also been useful for the selection of novel molecular subsystems 

having a desired property/activity. In this sense, they were successfully applied to the 

virtual screening (computational discovery) of novel trichomonacidals and tyrosinase 

inhibitors.34,35 Thus it is desirable to also to extend the already defined atom-based 
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(atom-level) bilinear indices to bilinear index for bonds and bond-type as well as for 

whole molecule.    

In fact, the edge (bond)-adjacency relationships have also been used in the 

generation of new TIs. In the last decade Estrada rediscovered this matrix as an 

important source of graph theoretical invariants useful in the generation of new MDs.9 

For instance, the є36 [as well as  є(ρ)37 and mєt(G)38], μ39 and Pє(G, x)40 [єc(x)] indices 

were re-defined by this author36-40 by using the Randić-type graph-theoretical invariant, 

spectral moment (trace) of E-matrix, edge-connectivity formalism [and long-range MDs 

for x different from zero], respectively. That is to say, these new indices are analogous 

to the tradicional MDs but calculated by edge(bond)-relationship instead of 

vertex(atom)-relationship. In the present report, such edge-adjacency relationships will 

be applied, in order to generate a series of bond-based bilinear indices to be used in drug 

design and chemoinformatic studies.  

Other relevant MDs have been extended to bonds codification. For example, in a 

manner similar to that for the atom- and atom-type level E-State,41 an E-State index for 

bonds and bond-type has been proposed.42 The bond-based E-State indices provided an 

improvement of 25% with regard to the atom-based E-State indices in the description of 

the boiling point of 372 alkanes, alcohols, and chloroalkanes.42 Other important 

example to bond-extend approach, in this case in quantum chemistry, is LCBO-MO  

(Linear Combination of Bond Orbitals-Molecular Orbitals). LCBO-MO is another way 

of forming molecular orbitals by taking linear combinations of functions associated with 

the different bonds in the molecule.43 To this effect, MOs are made up as LCBO of 

bonds composing the system, i.e. they are written in the form 

j

m

j
iji c ψϕ ∑

=
=

1
                                                                                                               (8)    
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where, i is the number of the MO ϕ , j is the number of bond ψ–orbitals and cij are  the 

numerical coefficients defining the contributions of individual BOs to the given MO. 

Although the LCAO (Linear Combination of Atom Orbitals) approximation has been 

particularly useful for the study of conjugated hydrocarbons, the LCBO method has 

been chiefly applied to the calculation of the properties of saturated hydrocarbons. As a 

saturated molecule can be considered as made up of localized bonds, it is reasonable to 

associate an orbital to each of the corresponding region.43 The great success of the 

bond-based MDs in QSPR/QSAR and drug design recently stimulated us to propose and 

validate some novel total and local parameters based on a topological (edge-adjacency 

relationships) characterization of the molecular structure.  

Here we will present new topological (topo-chemical) indices, namely local (bond 

and bond-type) and total bilinear indices based on the adjacency of edges. We also 

propose in this report a new matrix representation of the molecule on the “stochastic” 

adjacency of edges and bilinear indices derived from there. The ability of the new MDs 

is tested in a QSPR/QSAR studies of some physicochemical properties of octanes as 

well as in the description and prediction of the boiling point of 28 alkyl-alcohols and to 

the modelling of the specific rate constant (log k), partition coefficient (log P), as well 

as the antibacterial activity of 34 derivatives of 2-furylethylenes. The comparison with 

other approaches (2D/3D edge- and vertices-based connectivity indices, total and local 

spectral moments, and quantum-chemical descriptors as well as E-state/biomolecular 

encounter parameters) will be develop in order to see the behavior of our novel method 

in this QSPR/QSAR studies with regard to most of the MDs reported until now. 

The structure of this paper will be as follows: 1) An outline and definition of our 

procedures, with its peculiar mathematical properties, will be described in second 

section, 2) Later, the Material and Methods (database selection, computational 
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approach and chemometric studies) will be present in third section, 3) The correlation 

equations for the properties and molecules selected, as well as the statistical 

considerations on the obtained results will be developed in fourth section and, 4) Finally, 

conclusions will be presented in the last section. 

 

Theoretical Formalism 

The basis of the extension of bilinear indices, which will be given here, is the 

edge-adjacency matrix considered and explicitly defined in the chemical graph-theory 

literature,44,45 and rediscovered by Estrada as an important source of new MDs.36-40 

 

BACKGROUND IN EDGE-ADJACENCY MATRIX AND NEW EDGE-

RELATIONS: STOCHASTIC EDGE-ADJACENCY MATRIX 

Let G = (V, E) be a simple graph, with V = (v1, v2, ..., vn) and E = (e1, e2, ...em) 

being the vertex- and edge-sets of G, respectively. Then G represents a molecular graph 

having n vertices and m edges (bonds). The edge-adjacency matrix E of G (likewise 

called bond adjacency matrix, B) is a symmetric square matrix whose elements eij are 1 

if and only if edge i is adjacent to edge j.39 Two edges are adjacent if they are incident to 

a common vertex. This matrix corresponds to the vertex-adjacency matrix of the 

associated line graph. Finally, the sum of the ith row (or column) of E is named the edge 

degree of bond i, δ(ei).36-40 

By using the edge (bond)-adjacency relationships we can find other new relation 

for a molecular graph that will be introduced here. The kth stochastic edge-adjacency 

matrix, ESk can be obtained directly from Ek. Here, ESk = [kesij] is a square matrix of 

order m (m = number of bonds) and the elements kesij are defined as follow:  
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where keij are the elements of the kth power of E and the SUM of the ith row of Ek is 

named the k-order edge degree of bond i, kδ(ei). Notice that the matrix ESk, defined on 

Eq. 1, has the property that the sum of the elements in each row is 1. Such an mxm 

matrix, with nonnegative entries having this property, is called a “stochastic matrix”.46-

48 

 

CHEMICAL INFORMATION AND BOND-BASED MOLECULAR VECTOR 

The atom-based molecular vector ( x ) used to represent small-to-medium size 

organic chemicals has been explained in some detail elsewhere.19,21-23 In a way parallel 

to the development of x , we present the extension to the bond-based molecular vector 

( w ). The components (wi) of w  are numerical values, which represent a certain 

standard bond property (bond label). Therefore, these weights correspond to different 

bond properties for organic molecules. Thus, a molecule having 5, 10, 15,..., m bonds 

can be represented by means of vectors with 5, 10, 15,..., m components, belonging to 

the spaces 5ℜ , 10ℜ , 15ℜ , ..., mℜ respectively, where m is the dimension of the real set 

( mℜ ). This approach allows encoding organic molecules, such as 2-hydroxybut-2-

enenitrile through the molecular vector w  = [wCsp3-Csp2, wCsp2=Csp2, wCsp2-Osp3, wH-Osp3, 

wCsp2-Csp, wCsp≡Nsp]. This vector belongs to the product space 6ℜ . 

These properties characterize each kind of bond (and bond-type) within the 

molecule. Diverse kinds of bond weights (wi) can be used to encode information related 

to each bond in the molecule. These bond labels are chemically meaningful numbers 

such as standard bond distances49,50 and standard bond dipoles,49,50 or even 
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mathematical expressions involving atomic weights such as atomic electronegativities 

in Pauling’s scale.51 Here we characterized each bond with the following parameter: 

j

j

i

i xx
w

δδ
+=                                                                                                                   (10) 

In this expression, xi can be any standard weight of the atom i bonded to atom j. 

The δi is the vertex (atom) degree of atom i. Thus, chemical information can be codified 

by means of two different molecular vectors, for instance, w  = [w1,…,wn] and u  = 

[u1,…,un], w  ≠ u , which is possible if different weighting schemes are used.  

Table 1 comes about here (see end of the document) 

In the present report, we characterized each bond with mathematical expressions 

(Eq. 10) involving the following parameters: atomic masses (M), van der Waals 

volumes (V), atomic polarizabilities (P), and atomic electronegativities (K) in Mulliken 

scale.21 The values of these atomic labels are shown in Table 1. From this weighting 

scheme, six combinations (or twelve permutations if w M- u V ≠ w V-u M) of molecular 

vectors ( w ,u ; w ≠u ) can be computed, namely: w M-u V, w M-u P, w M-u K, w V-u P, 

w V- u K, and w P-u K. Here, the symbols w Y- u Z are used, where the subscripts Y and 

Z mean two atomic properties from our weighting scheme and a hyphen (-) expresses 

the pair. In order to illustrate the latter, an example will be described in a section below.  

 

DEFINITION OF BILINEAR FORMS: A MATHEMATICAL POINT OF VIEW 

In mathematics, a bilinear form in a real vector space mℜ is a mapping 

ℜ→ℜℜ mmxb : , which is linear in both arguments.21,25-27  That is to say, this function 

satisfies the following axioms for any scalar α  and any choice of vectors 121 ,,,, wvvwv  

and 2w  from mℜ :  

i. ),(),(),( wvbwvbwvb ααα ==  
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ii. ),(),(),( 2121 wvbwvbwvvb +=+       

iii. ),(),(),( 2121 wvbwvbwwvb +=+                                                                       (11) 

That is to say, b is bilinear if it is linear in each parameter, taken separately. 

Let V be a subset of the real vector space mm V ℜ⊂ℜ / , and { }meee ,...,, 21  the 

canonical basis set of mℜ . This basis set permits us to write in unambiguous form any 

vectors w and u of V, where: Vwww m ∈),...,,( 21 and Vuuu m ∈),...,,( 21 are the 

coordinates of the vectors w andu , respectively. Namely:  
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As it can be seen, the equation defined for b can be written in matrix form (see 

Eq. 15), where u  is a column vector (an nx1 matrix) of the coordinates of u  in a basis 

set of mℜ , and tw  (a 1xm matrix) is the transpose of w , where w  is a column vector 

(an mx1 matrix) of the coordinates of w in the same basis set of mℜ . 
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Finally, we introduce the formal definition of symmetric bilinear form. Let 

mℜ be a real vector space and b a bilinear function in mℜ . The bilinear function b is 

called symmetric if muwwubuwb ℜ∈∀= ,),,(),( .21,25-27 Then: 
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GLOBAL BOND-BASED BILINEAR INDICES 

If a molecule consists of m bonds (vectors of ℜm), then the kth total bilinear 

indices are calculated as bilinear maps (bilinear forms) on ℜm, in a canonical basis set. 

Specifically, the kth total non-stochastic and stochastic bond bilinear indices, bk( w ,u ) 

and sbk( w ,u ), are computed from these kth non-stochastic and stochastic edge 

adjacency matrices, Ek and ESk, as shown in Eqs. 17 and 18, correspondingly: 
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where m is the number of bonds of in the molecule, and w1,…,wm  and u1,…,um are the 

coordinates of the bond-based molecular vectors w and u , respectively, in the 

canonical basis set of mℜ . These coordinates will in turn coincide with the vector’s 

components, namely, w1,…,wm and u1,…,um, respectively.21,25-27 Therefore, those 

coordinates can be considered as weights (bond labels) of the molecular graph’s edge. 

The coefficients keij and kesij are the elements of the kth power of the matrices E(G) and 

ES(G), correspondingly, of the molecular pseudograph. The defining equations (Eqs. 17 

and 18) for bk( w ,u ) and sbk( w ,u ), respectively, may also be written as the single 
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matrix equation (see Eqs. 17 and 18), where u  is a column vector (an mx1 matrix) of 

the coordinates of u in the canonical basis set of mℜ , and tw  is the transposed of w , 

where w  is a column vector (an mx1 matrix) of the coordinates of w in the canonical 

basis of mℜ . Here, Ek and ESk denote the matrices of bilinear maps with regard to the 

natural basis set. 

It should be remarked that non-stochastic and stochastic bilinear indices are 

symmetric and non-symmetric bilinear forms, respectively. Therefore, if in the 

weighting schemes, M and V are used as weights to compute theses molecular 

descriptors (MDs), two different sets of stochastic bilinear indices, M-Vsbk
H( w ,u ) and V-

M sbk
H( w ,u ) [because in this case w M - u V ≠ w V - u M] can be obtained and only one 

group of non-stochastic bilinear indices M-Vsbk
H( w ,u ) = V-Msbk

H( w ,u ) [because in this 

case w M - u V = w V - u M) ] can be calculated. 

 

LOCAL BOND-BASED BILINEAR INDICES 

Finally, in addition to total bond-based bilinear indices, computed for the whole 

molecule, some local-fragmental (bond and bond-type as well as group-type) 

formalisms can be developed. These descriptors are termed as local non-stochastic and 

stochastic bilinear indices, bkL( w ,u ) and sbkL( w ,u ), respectively. The definition of 

these descriptors is as follows:  
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where m is the number of bonds, and keijL [kesijL] is the kth element of the row “i” and 

column “j” of the local matrix Ek
L [ESk

L]. This matrix is extracted from the Ek [ESk] 
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matrix; it contains information referred to the edges (bonds) of the specific molecular 

fragments and also of the molecular environment, in k steps. The matrix Ek
L [ESk

L] with 

elements keijL [kesijL] is defined as follows:  

keijL [kesijL] = keij [kesijL] if both ei and ej edges (bonds) are contained within the       

            molecular fragment  

       = ½ keij [kesijL] if either ei or ej is contained within the molecular fragment 

                   = 0, otherwise                                                                                             (21) 
                                                                                                                 

It is important to highlight that the scheme above follows the spirit of the 

Mulliken population analysis.52 It should be also remarked that for every partition of a 

molecule into Z molecular fragments there will be Z local molecular fragmental 

matrices. In this case, if a molecule is partitioned into Z molecular fragments, the 

matrices Ek [ESk] can be correspondingly partitioned into Z local matrices Ek
L [ESk

L], L 

= 1,... Z, and the kth power of matrix E [ES] is exactly the sum of the kth power of the 

local Z matrices. Therefore, the total (both non-stochastic and stochastic) bond-based 

bilinear indices are the sum of the local non-stochastic and stochastic bond-based 

bilinear indices, respectively, of the Z molecular fragments:  

),(),(
1

uwbuwb
Z

L
kLk ∑

=

=                                                                                               (22) 

),(),(
1

uwbuwb
Z

L
kL

s
k

s ∑
=

=                                                                                               (23) 

Bond and bond-type bilinear fingerprints are specific cases of local bond-based 

bilinear indices. The kth bond-type bilinear indices of the edge-adjacency matrix are 

calculated by adding the kth bond bilinear indices for all the bonds of the same type in 

the molecule. That is to say, this extension of the bond bilinear index is similar to group 
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additive schemes, in which an index appears for each bond type in the molecule 

together with its contribution based on the bond bilinear index.                                                                     

In the bond-type bilinear-indices formalism, each bond in the molecule is 

classified into a bond-type (fragment). In this sense, bonds may be classified into bond 

types in terms of the characteristics of the two atoms that define the bond. For all the 

data sets, including those with a common molecular scaffold as well as those with rather 

diverse structure, the kth fragment (bond-type) bilinear indices provide much useful 

information. Thus, the development of the bond-type bilinear indices description 

provides the basis for application to a wider range of biological problems in which the 

local formalism is applicable without the need for superposition of a closely related set 

of structures. 

It is useful to perform a calculation on a molecule to illustrate the steps in the 

procedure. For this, in the next section we show a representation of the computation of 

the non-stochastic and stochastic bilinear indices of the bond matrix (both total and 

local) by using a simple chemical example. 

SAMPLE CALCULATION 

The bilinear indices of the bond matrix are calculated in the following way. By 

considering the molecule of 2-hydroxybut-2-enenitrile as a simple example, we have the 

following labelled molecular graph and bond-based adjacency matrices (E and ES). The 

second (k = 2) and third (k = 3) powers of these matrices as well as the bond-based 

molecular vectors, w  and u are also given: 

HO
N

1

2 3
45  
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The molecule contains five localized bonds (corresponding to the five edges in 

the H-suppressed molecular graph). With these, we shall associate the five “bond 

orbitals” w1, w2, w3, w4, and w5. Thus, w  = [w1, w2, w3, w4, w5] = [w(C-C), w(C=C), w(C-C), 

w(C≡N), w(C-O)] and each “bond orbital” can be computed by Eq. 2 by using, for instance, 

the atomic electronegativity in Pauling scale (x)51 as atomic weight (atom label): 

w1 = xC /1 + xC /3 = 2.55/1 + 2.55/3 = 3.4 

w2 = xC /3 + xC /4 = 2.55/3 + 2.55/4 = 1.4875 

w3 = xC /4 + xC /4 = 2.55/4 + 2.55/4 = 1.275 

w4 = xC /4 + xN /3 = 2.55/4 + 3.04/3 = 1.650833 

w5 = xC /4 + xO /1 = 2.55/4 + 3.44/1 = 4.0775 

and, therefore, w = [3.4, 1.4875, 1.275, 1.650833, 4.0775]. 

Besides, other vector, u , can be calculated in the same way as w , but using 

other property, for example the atomic mass53 as atomic weight (atom-label):  

u1 = yC /1 + yC /3 = 12.01/1 + 12.01/3 = 16.013333  

u2 = yC /3 + yC /4 = 12.01/3 + 12.01/4 = 7.005833  

u3 = yC /4 + yC /4 = 12.01/4 + 12.01/4 = 6.0050 

u4 = yC /4 + yN /3 = 12.01/4 + 14.01/3 = 7.6725 

u5 = yC /4 + yO /1 = 12.01/4 + 16.00/1 = 19.0025 

and therefore, u = [16.013333, 7.005833, 6.0050, 7.6725, 19.0025]. 
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Each non-stochastic or stochastic total bilinear index will have the form: 

bk( uw, ) = + ke11w1u1 + ke12w1u2 + ke13w1u3
 + 

ke14w1u4
 + 

ke15w1u5
 + ke21w2u1

 + ke22w2u2 

                          + ke23w2u3
 + 

ke24w2u4
 + 

ke25w2u5
 + ke31w3u1 + ke32w3u2

 +  ke33w3u3 + ke34w3u4
  

                           + 
ke35w3u5

 + ke41w4u1 + ke42w4u2 + ke43w4u3
 + 

ke44w4u4
 + 

ke45w4u5
 + ke51w5u1  

                   + ke52w5u2 + ke53w5u3
 + ke54w5u4

 + 
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sbk( uw, ) = + kes11w1u1 + kes12w1u2 + kes13w1u3
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The elements keii and kesii can be considered a measure of the attraction of a 

bond for an electron in the k step while the elements keij and kesij are the terms of 

interaction between two bonds in the k step. In addition, keij = keji are equal by symmetry 

(non-oriented molecular graph). However, kesij ≠ kesji. This is a logical result because 

the kth esij elements are the transition probabilities with the ‘electrons’ moving from 

bond i to j at the discrete time periods tk and they should be different in the two senses. 

This result is in total agreement if the electronegativities of the two atom types in the 

bonds are taken into account. 

In this way, Ek and ESk can be seen as graph–theoretical electronic–structure 

models.54 Actually, quantum chemistry starts from the fact that a molecule is made up 

of electrons and nuclei. The distinction here between bonded and non-bonded atoms is 

difficult to justify. Any two nuclei of a molecule interact directly and indirectly through 

the electrons present in the molecule. Only the intensity of this interaction varies on 
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going from one pair of nuclei to another. In this sense, the electron in an arbitrary bond i 

can move (step-by-step) to other bonds at different discrete time periods tk (k = 0, 1, 2, 

3,…, n) through the chemical-bonding network. Therefore, the E1 and ES1 matrices 

consider the valence-bond electrons in one step and their power (k = 0, 1, 2, 3,…, n) can 

be considered as an interacting–electron chemical–network model in k steps. This model 

can be seen as intermediate between the quantitative quantum-mechanical Schrödinger 

equation and classical chemical bonding ideas.54 

On the other hand, the kth (k = 3,0 ) non-stochastic total bilinear indices can be 

expressed as the sum of the local (bond) bilinear indices for this molecule as follows: 

),(),(),(),(),(),(),( 0504030201

5

1
00 uwbuwbuwbuwbuwbuwbuwb

L
L ++++== ∑

=

 

= 54.44533 + 10.42118 + 7.656375 + 12.66602 + 77.48269 = 162.6716 

),(),(),(),(),(),(),( 1514131211

5

1
11 uwbuwbuwbuwbuwbuwbuwb

L
L ++++== ∑

=

  

= 23.81983 + 61.16852 + 43.13707 + 9.847846 + 52.77304 = 190.7463 

),(),(),(),(),(),(),( 2524232221

5

1
22 uwbuwbuwbuwbuwbuwbuwb

L
L ++++== ∑
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 = 139.8138 + 80.10137 + 76.67535 + 55.48246 + 304.0172  = 656.0901 

),(),(),(),(),(),(),( 3534333231

5

1
33 uwbuwbuwbuwbuwbuwbuwb

L
L ++++== ∑

=

 

= 183.0889 + 262.1182 + 207.3626+ 98.6209 + 462.3363 = 1213.527 

The terms in the summations for calculating the total bilinear indices are the so-

called local (bond) bilinear indices, which, in turn, have been written in the consecutive 

order of the bond labels in the graph. For instance, the non-stochastic bond bilinear 

indices of orders 0, 1, 2 and 3 for the bond labelled as 1 are 54.44533, 23.81983, 

139.8138 and 183.0889, respectively. 
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The kth total stochastic bilinear indices values are also the sum of the kth local 

(bond) stochastic bilinear indices values for all bonds in the molecule: 
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 = 54.44533 + 10.42118 + 7.656375 + 12.66602 + 77.48269 = 162.6716 
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 = 15.87989 + 30.70998 + 19.72389 + 6.587033 + 22.01199 = 94.91277 
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 = 39.46198 + 14.31402 + 14.48064 + 14.93603 + 58.66773 = 141.8604 
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 = 23.20039 + 22.578 + 17.14819 + 13.09528 + 40.77731 = 116.7992 

 

Material and Methods 

DATABASE SELECTION 

Three benchmark datasets have been used to evaluate the QSPR/QSAR behavior 

of the new bond-level TOMOCOMD-CARDD MDs. With this objective in mind, we 

developed the QSPR models to describe several physicochemical properties of octane 

isomers (FIRST CASE)55,56 and, to analyze of the boiling point of 28 alkyl-alcohols 

(SECOND CASE)42,57 and to examine of the specific rate constant (log k), the partition 

coefficient (log P), as well as the antibacterial activity of 34 derivatives of 2-

furylethylenes (THIRD CASE).57,58 

The use of octanes (FIRST CASE), as a very suitable data set for testing TIs, has 

been advocated by Randić and Trinajstić and at present is consider by International 
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Academy of Mathematical Chemistry like a benchmark database for comparison among 

old (well-know) and new MDs.59,60 In fact, this dataset has been used by several 

researchers to evaluate the modeling power of their new MDs.40,56,61-66 This selection is 

recommended, because the physicochemical properties commonly studied in QSPR 

analyses with TIs are interrelated for data sets of compounds with different molecular 

weights, for instance for alkanes with two to nine carbon atoms. These correlations are 

not necessarily observed when the same indices are used in isomeric data sets of 

compounds, such as the octane data set. In addition, these properties are hardly 

interrelated when octane’s are used as a data set.67 On the other hand; all TIs are 

designed to have (gradual) increments with the increments in the molecular weight. In 

this way, if we do the present study by using a series of compounds having different 

molecular weights, we will find “false” interrelations between the indices by an 

overestimation of the size effects inherent to these descriptors.40,61 The same is also 

valid when the QSPR model is to be obtained. It is not difficult to find “good” linear 

correlations between TIs and physicochemical properties of alkanes in data sets with 

great size variability.40,61 In fact, the simple use of the number of vertices in the 

molecular graph produced regression coefficients greater than 0.97 for most of the 

physicochemical properties of C2-C9 alkanes studied by Needham et al.68 However, 

when data sets of isomeric compounds are considered, typically correlations that have 

high correlation coefficients when molecules of different size were considered will no 

longer show such good linear correlation. In conclusion, if a new proposed molecular 

descriptor is not able to model the variation of at least one property of octanes, then it 

probably does not contain any useful molecular information. 

In order to illustrate the possibilities of our approach in the QSPR studies of 

heteroatomic molecules, we have selected the boiling point of 28 alkyl-alcohols 
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(SECOND CASE) to be investigated.42,57 This data set was firstly studied by Kier and 

Hall42 using E-state/biomolecular encounter parameters and later by Estrada and 

Molina57 employing the local spectral moments of the edge adjacency matrix. This 

heteromolecules-based database is composed by 28 alkyl-alcohols, 14 are primary, 6 

secondary and 8 tertiary, for which the boiling point (Bp) has been reported previously. 

Alcohols constituted a good set of chemicals for comparative study, because it is a 

isomeric data set, which are heteroatomic compounds and boiling point not only depend 

of gradual variation of molecular weight, but also of H-bonding capacity and R-group 

type. Additionally, QSPR studies are available for comparison purpose.42,57  

The second heteromolecule-based database that will be studied here consists of by 

a set of 34 2-furylethylene derivatives (THIRD CASE), early studied by using total and 

local spectral moments, 2D/3D connectivity indices (vertex and edge ones) and two 

quantum-chemical descriptors.57,58 These chemicals have different substituents at 

position 5 of the furan ring, as well as at the β position of the exocyclic double bond.69 

The values of the n-octanol/water partition coefficient (log P) and rate constant (log k) 

(for nucleophilic addition of the mercaptoacetic acid) of these compounds have been 

experimentally determined and reported in the literature.69 The antibacterial activity of 

these compounds was determined as the inverse of the concentration C that produces 

50% of growth inhibition in E. coli at six different times and reported as log(1/C).69 This 

antibacterial activity was used to classify furylethylenes into two groups by Estrada and 

Molina.58 The group of active compounds is composed of those substance having values 

of log(1/C) < 3, while the rest form the group of inactive molecules. In this study, we 

also taken into account a series of nine new 2-furylethylenes, used by Estrada and 

Molina58 as external prediction (test) set. These compounds have an NO2 group at 
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position R3 and a Br or I at positions R1 and/or R2. All these compounds showed 

antibacterial activity in different assays.70  

 

COMPUTATIONAL APPROACH 

TOMOCOMD is an interactive program for molecular design and 

bioinformatic research.71 It consists of four subprograms; each one of them allows 

drawing the structures (drawing mode) and calculating molecular 2D/3D (calculation 

mode) descriptors. The modules are named CARDD (Computed-Aided ‘Rational’ Drug 

Design), CAMPS (Computed-Aided Modeling in Protein Science), CANAR 

(Computed-Aided Nucleic Acid Research) and CABPD (Computed-Aided Bio-

Polymers Docking). In the present report, salient features are outlined concerning with 

only one of these subprograms, CARDD, and with the calculation of non-stochastic and 

stochastic 2D bond-based bilinear indices.  

Work Methodology. The main steps for the application of the present method in 

QSAR/QSPR and drug design can be briefly summarized in the following algorithm: 1) 

Draw the molecular pseudographs for each molecule in the data set, using the software 

drawing mode. This procedure is performed by a selection of the active atomic symbols 

belonging to the different groups in the periodic table of the elements, 2) Use 

appropriated atomic properties in order to weight and differentiate the molecular bonds. 

In this study, the used properties are those previously proposed for the calculation of the 

DRAGON descriptors,9,53,56 i.e., atomic mass (M), atomic polarizability (P), atomic 

Sanderson electronegativity (K), van der Waals atomic volume (V).The values of these 

atomic labels are shown in Table 1. In order to calculate the required weights, it is used 

the mathematical expression given by Eq. 10, which involves atomic weights. 3) 

Compute the total and local (bond and bond-type) non-stochastic and stochastic bilinear 
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indices. It can be carried out in the software calculation mode, where one can select the 

atomic properties and the descriptor family to calculate the molecular indices. This 

software generates a table, in which the rows correspond to the compounds, and 

columns correspond to the total and local bond-based linear indices or other family of 

molecular descriptors implemented in this program. 4) Find a QSPR/QSAR equation by 

using several multivariate analytical techniques, such as multilinear regression analysis 

(MRA), neural networks (NN), linear discrimination analysis (LDA), and so on. That is 

to say, we can find a quantitative relation between an activity A and the bilinear indices 

having, for instance, the following appearance, A = a0b0( w ,u ) + a1b1( w ,u ) + 

a2b2( w ,u ) +….+ akbk( w ,u ) + c, where A is the measured activity, bk( w ) are the kth 

total bond-based bilinear indices, and the ak and c are the coefficients obtained by the 

linear regression analysis. 5) Test the robustness and predictive power of the 

QSPR/QSAR equation by using internal (cross-validation) and external (using a test set 

and an external predicting set) validation techniques 

The common (for the three QSPR/QSAR experiments) bond–based 

TOMOCOMD-CARDD MDs, computed in this study, were the following: 

1)   kth ( )15,0=k  total non-stochastic bond-based bilinear indices, not considering 

and considering H-atoms in the molecular graph (G) [Y-Zbk( w ,u ) and Y-

Zbk
H( w ,u )], respectively. 

2)   kth ( )15,0=k  total stochastic bond-based bilinear indices, not considering and 

considering H-atoms in the molecular graph (G) [Y-Zsbk( w ,u ) and Y-

Zsbk
H( w ,u )], respectively. 

In addition, for every case we computed other more specific total or local 

TOMOCOMD-CARDD MDs, such as: 
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i) CASE 1 

3)   kth ( )15,0=k  bond-type (C-H in methyl group) non-stochastic and stochastic 

bilinear indices considering H-atoms in the molecular graph (G) [Y-ZbkL
H( w C-H,u C-

H) and Y-ZsbkL
H( w C-H,u C-H), correspondingly]. These local descriptors are calculated 

taken into account only one of the three bond-types for carbon-hydrogen bonds 

(Cprimary-H).  

b) CASE 2 

ii)   kth ( )15,0=k  local (bond-type: O in hydroxyl group) non-stochastic [and stochastic] 

bilinear indices considering and not-considering H-atoms and not in the molecular 

graph (G) {Y-ZbkL
H( w O,u O) [Y-ZsbkL

H( w O,u O)] and Y-ZbkL( w O,u O) [Y-

ZsbkL( w O,u O)], in the same way} 

iii) CASE 3 

5)   kth ( )15,0=k  bond-type (group = heteroatoms: S, N, O) non-stochastic [and 

stochastic] bilinear indices, not considering and considering H-atoms in the 

molecular graph (G) {Y-ZbkLE( w E, u E) [Y-ZsbkLE( w E, u E)] and Y-ZbkLE
 H( w E,u E) [Y-

ZsbkLE
 H( w E,u E)]}, respectively. These local descriptors are putative molecular 

charge, dipole moment, and H-bonding acceptors character.  

6)   kth ( )15,0=k  bond-type {group = exocyclic double bond [atoms 2, 6 and 7, or for 

the bonds defined by these atoms (C2-C6 and C6-C7)]} non-stochastic [and 

stochastic] bilinear indices not considering and considering H-atoms in the 

molecular graph (G), respectively. These atoms are those involved in the exocyclic 

double bond of the 2-furylethylene and these are the “target” of the nucleophilic 

attack by the thiol (mercapto) group.57 
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CHEMOMETRIC STUDIES 

The whole set of new MDs were used as independent variables for derived 

QSPRs/QSARs by using multiple linear regression (MLR) technique. The 

STATISTICA72 software was employed to perform variable selection and QSPR 

modeling. The search for the best model can be processed in terms of the highest 

correlation coefficient (R) or F-test equations (Fisher-ratio’s p-level [p(F)]), and the 

lowest standard deviation equations (s). The quality of models was also determined by 

examining the Leave-One-Out (LOO) cross-validation (CV) (q2, scv).73,74 In recent 

years, the LOO press statistics (e.g., q2) have been used as a means of indicating 

predictive ability. Many authors73-75 consider high q2 values (for instance, q2 > 0.5) as an 

indicator or even as the ultimate proof of the high-predictive power of a QSAR model.  

 

Results and Discussion 

CASE 1. PHYSICOCHEMICAL PROPERTIES OF OCTANE ISOMERES 

In the first experiment, the octane isomers and several of their physicochemical 

properties was analyzed. However, to evaluate the quality of the models based on our 

new bond-level chemical descriptors we have taken as the reference only six 

physicochemical properties selected in the previous study56 Therefore, we analyzed the 

quality of the QSPR models obtained to describe the boiling point (BP), motor octane 

number (MON), heat of vaporization (HV), molar volume (MV), entropy (S), and heat 

of formation (ΔfH) of the octane isomers. The regressions of octane properties, based on 

the non-stochastic and stochastic bond/based bilinear indices, will be compared to some 

regressions based on 2D (topological/topo-chemical) and 3D (geometrical) MDs, taken 

from the literature.56 
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The best linear models, found using non-stochastic and stochastic total and bond-

type bilinear indices are presented in Table 2. For each selected property of octane 

isomers, the statistical information for the best regressions with 1, 2, and 3 MDs 

published so far56 are also depicted in Table 2. Together with the LOO cross-validation-

explained variance (q2
LOO), the determination coefficient (R2), the standard deviation the 

error (s), and Fischer ratio (F) are listed. The MD symbols are reported in eighth 

column, and the last column contains the references of the models taken from the 

literature. 

Table 2 comes about here (see end the document) 

As can be appreciated from the statistical parameters of regression equations in 

Table 2, all of the physicochemical properties were well described by bond-based 

bilinear indices. In this table we can observe that the statistical parameters for the 

models, obtained with bond-based bilinear indices to describe motor octane number 

(MON) (Eqs. 26 and 27), molar volume (MV) (Eqs. 30 and 31) and heat of vaporization 

(HV) (Eqs. 28 and 29) of octanes, are better than those taken from the literature. The 

physicochemical property MV is well-described exclusively by the bond-based bilinear 

indices. It is remarkable, that for all properties the bond-level bilinear indices are better 

than atom-based MDs. Notice also that in the models based on the bond-level chemical 

bilinear indices, the two regressions for the boiling point (BP) (Eqs. 24 and 25) are 

similar than the models published so far.56  

Only the models found by us to describe entropy (S) (Eqs. 32 and 33), and heat of 

formation (ΔfH) (Eqs. 34 and 35) have significant differences with the precedent models 

obtained by applying the selection procedure to the set given by GETAWAY 

descriptors plus WHIM and all the TIs. However, in the later property, the atom-based 

bilinear indices showed the best results.   
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According to the obtained QSPR results, it is possible to conclude that the new 

MDs encode some useful molecular information different from that of previous 

proposed descriptors. Moreover, they are quite diverse among themselves, being able to 

describe well the variation in different properties of octanes.  

Finally, we also model others properties of this set of molecules. The obtained 

QSPRs together with the statistical parameters are depicting in Table 3. As can see, all 

properties were well described by using three-parameters in every model. Always, the 

non-stochastic indices were better than stochastic form.  

Table 3 comes about here (see end the document) 

 

CASE 2. BOILING POINT OF 28 ALKYL-ALCOHOLS 

The boiling point (Bp) of a set of 28 alkyl-alcohols (see Table 4) compiled by Kier 

and Hall42 was examined using  the new bond-based bilinear indices. The statistical 

information for the best regressions with 2, 3, and 4 parameters are depicted in Tables 5.  

Tables 4 come about here (see end the document) 

Tables 5 depict the obtained QSPR models by using non-stochastic and stochastic 

bond-level MDs, employing the whole weight scheme (best combination of MDs 

computed with four atomic properties). As can be seen, all the two-, three- and four-

parameter regression equations showed rather-to-good behaviour for the description of 

Bp of alkyl-alcohols. It should be remarked that the two-parameter regression models 

had rather good predictive power (see qLOO). In fact, the inclusion of a new MD (best 

three-parameter regression models) not depicted a dramatic improvement of statistical 

R2, s, and qLOO values from the two-parameter equations. Similarly, the best 

combination of four-parameter correlation with Bp was searched to give the greatest 

statistical parameters values. That is, as long as the statistical parameters are concerned, 



 28

any combination of two, three and four parameters can give more or less similar results. 

Maybe, at this level of R2 values, is better to develop the statistical analysis of the 

obtained models, taken into consideration the LOO-press statistics, specifically scv.  

Tables 5 come about here (see end the document) 

In concluding, the best linear regression model obtained to describe the Bp of 

these chemicals, by using non-stochastic and stochastic bond-based linear indices is 

given below, respectively: 

 

Bp (°C) = 69.302 (±2.149) – 8.31x10-3(± 4.36x10-4)MVb1(w,v) -0.802 (± 0.032) MPb2L
H 

(w,v)E +  19.730 (±0.211) PKb0
H(w,v)  + 9.356x10-7(±1.672x10-7) PKb12L(w,v)E                (36) 

N = 28   R² = 0.999   q2 = 0.998   s = 1.1°C   sCV = 1.3°C    F(4,23) = 4174.7   p <0.0001 

 
 
Bp (°C) = 45.859 (± 1.757) + 1.856 (± 0.075) MVeb4

H (w,v)  -  17.549 (± 0.353) 

MKeb3
H(w,v)  + 0.138 (±0.012) MKeb1(w,v)+ 0.534 (± 0.041) PVeb0 (w,v)                    (37) 

N = 28  R² = 0.999    q2 = 0.998   s = 1.1°C   sCV = 1.2°C    F(4,23) = 4404.8   p <0.0001 

 

where N is the number of compounds, R² is the determination coefficient, s is the 

standard deviation of the regression, q2 (sCV) is the square correlation coefficient 

(standard deviation) obtained from the LOO cross-validation procedure, and F is the 

Fisher ratio.  

The values of experimental and calculated values of the Bp for the data set (both 

models) are given in Table 4, and the linear relationships between them are illustrated in 

Figures 1 and 2, respectively.  

Figure 1 and 2 come about here (see end the document) 
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These models (Eqs. 36 and 37) explain more than 99% of the variance of the 

experimental Bp values. Similar-to-inferior equations were reported by Estrada and 

Molina,57 and Kier and Hall42 by using spectral moment and E-state as MDs, 

correspondingly. The statistical parameters of the best equations obtained by those 

authors are given in Table 6 (together with others results obtained with different atom- 

and bond-based TOMOCOMD-CARDD MDs34,76). The reported models explain more 

than 98% and 92% of the variance of the experimental Bp values, respectively. 

Unfortunately, the authors (Estrada and Molina,57 and Kier and Hall42) did report the 

result of the cross-validation. However, it is remarkable that our models explain a 

greater percentage of the variance of the experimental Bp values than the previously 

developed models do, showing a decrease in the standard error of 73.81% and 81.03%, 

with regard to the results previously achieved by Estrada and Molina57 and Kier and 

Hall),42 Respectively. Table 6 summarizes the statistical parameters yielded by all these 

approaches. As can be observed in this Table, the result obtained by using other atom- 

and bond-based TOMOCOMD-CARDD MDs were also included. The QSPR model 

derived with bond-level bilinear indices showed better-to-similar results that obtained 

by some of the present authors en previously studies. 

Table 6 come about here (see end the document) 

 

CASE 3. 34 2-FURYLETHYLENE DERIVATIVES 

Partition Coefficient (log P) and Rate Constant (log k). It has been clear, from 

structure-activity relationship studies, that the lipophilicity and the nucleophilic addition 

of the thiol groups of some enzymes to the exocyclic double bond of 2-furylethylene 

derivatives are critical for the development of their antibacterial activity.69,77 The log P 

and log k of nucleophilic addition of the mercaptoacetic acid to the exocyclic double 
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bond has an important role in the understanding of the biological behavior of these 2-

furylethylene derivatives. Consequently, we shall study these parameters to compare the 

possibilities of molecular bond-based bilinear indices in QSPRs, and to compare these 

results to those obtained by Estrada and Molina,57,58 by using topological (total and 

local spectral moment and 2D connectivity indices), topographic and quantum chemical 

descriptors. This experiment will also permit us to compare the present result with the 

one achieved by using some atom-based TOMOCOMD-CARDD MDs. The MDs, 

included in these equations, clearly pointed to the identification of the reaction centers 

involved in the studied chemical interaction.57,58 That is to say, the kth local spectral 

moments calculated for the atoms 2, 6 and 7, or for the bonds defined by these atoms 

(C2-C6 and C6-C7) were selected as the most significant ones. These atoms are those 

involved in the exocyclic double bond of the 2-furylethylene and these are the “target” 

of the nucleophilic attack by the thiol (mercapto) group. Taking into account this logical 

result, we also calculated the kth local bilinear indices for these atoms (bonds C2-C6 and 

C6-C7).  The best models obtained, by using these bond-type bilinear indices as MDs, 

together with their statistical parameters, are given below: 

 

Log k =  8.626(±0.802) +6.332x10-3(±5.77x10-4)MKbH
2L(w,v)E    

               - 1.90x10-4(±2.29x10-5)     MKbH
5L(w,v)E –0.0495(±0.0042) MKb3L(w,v)C2-C6  

               + 0.0511(±0.0029) VKbH 4L(w,v)C6-C7   -0.0207(±0.0013) VKbH
5L(w,v)C6-C7  

               +1.34x10-4(±1.01x10-5)VKbH
8L(w,v)C6-C7 +0.019(±0.002)VKb3L(w,v)C6-C7       (38) 

N = 34        R² = 0.985      s = 0.198     q2 = 0.964      scv = 0.270        F(7,26)  = 242.04 

 

Log k =  5.946(±0.741) – 0.4085(±0.0344) MVebH
6L(w,v)C2-C6  

               +0.3917(±0.0340) MVebH
10L(w,v)C2-C6 + 0.0101 (±0.0056)MVeb1L(w,v)C2-C6
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                      +  1.6242(±0.1547)MPebH 2L(w,v)C6-C7  - 0.2421(±0.0311)VPeb5L(w,v)C2-C6
   

               + 0.0737(±0.0172) VKeb1L(w,v)C2-C6
  -8.1139(±1.1287) PKebH

13L(w,v)C2-C6   (39)                               

N = 34        R² = 0.987      s = 0.178     q2 = 0.971    scv = 0.240      F(7,26)  = 293.74 
 
 

Log P = 1.1708(±0.2120) + 1.99x10-3(±1.46x10-4) MVb0(w,v)  

              - 0.0172(±0.0016) MVb1L(w,v)E –2.79x10-4(±5.55x10-5) 
MPbH

4(w,v)   

                     -4.00x10-3(±3.12x10-4) MPbH
4(w,v)E +1.092x10-3(±1.13x10-4) MPbH

5L(w,v)E
    

                     +0.2030 (±0.0202) 
MPb1L(w,v)E

   + 0.0150(±0.0010) ) MKbH
1L(w,v)E

              (40)                                            

N = 34        R² = 0.970      s = 0.140     q2 = 0.910     scv = 0.216      F(7,26)  = 119.14 
                 

Log P = 0.4413(±0.1247) - 0.0031(±0.0003) MVeb2(w,v)  + 0.0474(±0.0028) MPeb0(w,v)   

             - 0.4157(±0.0237) MPebH
6L(w,v)E + 0.0327(±0.0025) ) 

MKebH
0(w,v)   

                   + 0.0945 (±0.0064) MKebH
5L(w,v)E   + 0.0386(±0.0058) VPeb5L(w,v)E  

              – 0.0250(±0.0026) VKeb3L(w,v)E                                                                    (41) 

N = 34        R² = 0.981      s = 0.110    q2 = 0.949    scv = 0.162     F(7,26)  = 197.61 
 

The structures of these 34 furylethylene derivatives are given in Table 7. The 

observed and calculated values of log P and log k are show in Tables 8 and 9, 

respectively. 

Tables 7-9 come about here (see end the document) 

These equations, obtained by using non-stochastic (stochastic) bilinear indices, 

explained 98.5% (98.7%) and 97.0% (98.1%) of the variance of log k and log P, 

respectively. These statistics are rather better than those previously obtained (see Table 

10 for more details).57,58  

Table 10 comes about here (see end the document) 
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The LOO cross-validation procedure was used in order to assess the predictive 

ability of the developed models. Using this approach, models 38, 39, 40 and 41 had a 

LOO q2 of 0.964, 0.971, 0.971 and 0.910, respectively. These values of q2 (q2 > 0.5) can 

be considered as a proof of the high predictive ability of the models.73 Therefore, the 

equations obtained with the vertex- and edge-connectivity indices, with the topographic 

descriptors, and with the quantum-chemical indices showed smaller predictive abilities 

(scv of 0.247, 0.176, and 0.370, respectively) than Eqs. 40 (scv = 0.216) and 41 (scv = 

0.162), achieved with the total and local bond-based bilinear indices, respectively, for 

description of the Log P values (see Table 10 for more details). Unfortunately, the 

authors57 of the previous work did report the result of the LOO cross-validation 

experiment for log k. However, in Table 10 it can be easily observed that our obtained 

model, Eq. 38 (Eq. 39) explains a greater percentage of the variance of the experimental 

Log k values than the previously developed models do, showing decreases in the 

standard error of 70.93%, 69.77%, 38.13% and 32.14% (73.86%, 72.82%, 44.38% and 

38.19%), with regard to the results previously achieved by Estrada and Molina,57 by 

means of connectivity indices (both 2D and 3D as well as edge- and vertex-based), total 

(global) spectral moment (sum of the trace of the bond matrix), local (fragment) 

spectral moment (partial sum of the trace of the bond matrix) and quantum chemical 

descriptors, respectively. As can be observed in the same Table, the result obtained by 

using other atom- and bond-based TOMOCOMD-CARDD MDs were also included. 

The QSPR model derived with bond-level bilinear indices showed better-to-similar 

results than the ones obtained by some of the present authors en early 

publications.33,34,76 

On the other hand, in the different form as to the Bp description, the stochastic 

indices are similar-to-better than non-stochastic ones to describe both Log k and Log P 
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of furylethylene derivatives. This is an interesting finding, because this result showed 

that maybe for some properties/molecules non-stochastic descriptors are the best 

selection but not for other properties/activities. Here, it is important to outstand that all 

the obtained equations have a great representation of local indices, mainly of molecular 

fragments (C2-C6 and C6-C7) and group-type (heteroatoms). The distribution was 

significantly slight different for the two properties. The description of Log P takes the 

calculus on the heteroatoms like most relevant variables, while Log k sees the C2-C6 and 

and C6-C7 indices as most important ones. This is a logical result, if we take into 

account that these atoms are those involved in the exocyclic double bond of the 2-

furylethylene, and that these are the “target” of the nucleophilic attack by the thiol 

(mercapto) group. Nevertheless, the total MDs included in the achieved models also 

indicate that the best description of the properties will be obtained by using a 

combination the global and local features of every chemical included in the analysis. 

From this point of view, it is of great importance to have atom- or bond-level as well as 

total molecular indices in the molecular space, to do a better description than the one 

obtained by using separately the local and global sets of MDs. The indices that appear 

more frequently in to the final equation are the short-to-medium range (k = 2-5) ones. 

This showed that the interaction of electron (bonds) of every atomic nucleus in ±2-5 

steps, as well as the molecular environment of exocyclic double bond (in ±2-5 steps), 

determined the chemical reactivity of fuerylethylenes. In fact, the pair electronegativity 

(K)-Atomic mass (M) can be selected like the best combine atomic-label of all the 

employed ones, having more representation in the selected/included indices in the final 

equations. Polarizability (P)-M was the second more relevant vertex-weight 

combination. Nonetheless, the whole weighting-schedule, included in every model, 
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showed that the used adequate combinations of chemical-labels are rather important, in 

order to predict properties and activities of different natures.   

Antibacterial Activity. Finally, LDA will be used here to obtain a classification model 

of 2-furylethylene compounds according to their antibacterial activity. The two best 

models obtained classification is given below, together with the statistical parameters of 

LDA: 

Class = -19.757 – 7.02x10-5 VKbH
7L(w,v)E +0.0482 VKb1L(w,v)E  

                + 1.16x10-5 VKbH 10L(w,v)C6-C7                                                                     (42)                      

N = 34      λ = 0.260        D2 = 11.05           F(3,30) = 28.42              p<0.0001 

 

Class = -20.00 –0.0236MVebH
10(w,v) +5.6203MPebH

14L(w,v)C6-C7 +0.1827VPeb1L(w,v)E (43)     

N = 34      λ = 0.268     D2 = 10.59         F(3,30) = 27.25            p<0.0001        

where λ is Wilks’ statistic, D2  is the square Mahalanobis distance, and F is the Fisher 

ratio. The statistical analysis showed that it exists appropriate discriminatory power to 

differentiate between the two respective groups. The calculation of percentages of good 

classification in the data set and external prediction set permitted us to carry out the 

assessment of the models.  

Model 42 classified correctly 97.10% of the compounds in the training data set, 

misclassifying only 1 out of 34 compounds. The percentage of false actives in this data 

set was only 2.94%, i.e., 1 inactive compound was classified as active from 34 cases. 

Conversely, no compound from the group of actives was misclassified as inactive one 

(0.00% of misclassification). In contrast, Model 43 depicted 100.0% and 90.0% of good 

classification in the active and inactive groups, with an overall accuracy of 94.12 % in 

the training data set (32/34). Both equations showed a 100% of prediction in the test set 

(see the bottom of Table 10 and 11).  
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Table 10 comes about here (see end the document) 

The statistical analysis of the three models, previously obtained by using 2D and 

3D connectivity and quantum chemical descriptors, showed quite similar results. In this 

case, the overall accuracy of the three models was 91.2%, 94.1%, and 88.2%, 

respectively (see Table 10 for more details).58 The improvement in the statistical 

parameters of our models (Eqs. 42 and 43) compared the one using 2D and 3D 

connectivity indices as well as quantum chemical descriptors is easily detected by the 

decrease in the Wilks’ λ parameter and an increase in the Mahalanobis square distance. 

Finally, the present result compared quite favorably us to the other atom-based 

TOMOCOMD-CARDD descriptors (Table 10).   

 

Final Conclusions 

The total and local (bond and bond-type) bilinear indices of the non-stochastic and 

stochastic edge-adjacency matrices are novel sets of graph-theoretical descriptors. These 

indices have a series of important features that make MDs useful to be employed in 

QSPR/QSAR studies, similarity/diversity analysis and drug-design protocols. The 

functional definitions of these new set of molecular parameters are based on well-

known and accepted algorithms and formulas in mathematics. Namely, these novel 

bond-based MDs are based on a bilinear map similar to those defined in linear algebra. 

The bond- and atom-type formalism will permit to expedite investigation of molecular 

mechanisms and rational design of molecules at the local level. These local bilinear 

indices together with global ones are now added as a new set of MDs to the significant 

arsenal of whole-molecule indices. The correlations found by these new sets of bond-

level chemical descriptors for the examination of physicochemical properties of octane 

isomers (FIRST CASE), Bp of alkyl-alcohols (SECOND CASE), as well as the 
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specific rate constant (log k), partition coefficient (log P), and the antibacterial activity 

of 34 derivatives of 2-furylethylenes (THIRD CASE) can be considered as statistically 

significant and permit a clear interpretation of the studied properties in terms of the 

structural features of molecules. The comparison with other approaches reveals good 

performance of the method proposed. Therefore, it is clearly demonstrated that this 

suitability is higher than that shown by other 2D/3D well-known sets of MDs. The 

applications of the present method to QSPR/QSAR and drug-design studies as well as 

similarity/diversity analysis of several classes of organic compounds are now in 

progress and will be the subject of a future publication. In fact, several promissory 

results have been achieved with the use of these novel total and atom-level MDs in 

computational drug discovery of new trichomonacidals.35 
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ANNEXES 
(Tables, Figures and Schemes to be Inserted in the Main Text) 

 
Table 1. Values of the Atom Weights Used for Linear Indices Calculation. 
ID Atomic Mass VdWa Volume 

(Å3) 
Mulliken  

Electronegativity  
Polarizability 

(Å3) 
H 1.01 6.709 2.592 0.667 
B 10.81 17.875 2.275 3.030 
C 12.01 22.449 2.746 1.760 
N 14.01 15.599 3.194 1.100 
O 16.00 11.494 3.654 0.802 
F 19.00 9.203 4.000 0.557 
Al 26.98 36.511 1.714 6.800 
Si 28.09 31.976 2.138 5.380 
P 30.97 26.522 2.515 3.630 
S 32.07 24.429 2.957 2.900 
Cl 35.45 23.228 3.475 2.180 
Fe 55.85 41.052 2.000 8.400 
Co 58.93 35.041 2.000 7.500 
Ni 58.69 17.157 2.000 6.800 
Cu 63.55 11.494 2.033 6.100 
Zn 65.39 38.351 2.223 7.100 
Br 79.90 31.059 3.219 3.050 
Sn 118.71 45.830 2.298 7.700 
I 126.90 38.792 2.778 5.350 
aVdW: van der Waals 
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Table 2. Statistical Information for Best Multiple Regression Models of Selected Physicochemical Properties of Octane Isomers. 
Property Method size Q2

LOO
 R2 s F Equation or Model Descriptors Ref. 

 2D Bond- and Atom-based bilinear indices 

Boiling Point (BP) NonStochastic Bond-
based Bilinear Indices 3 97.50 98.49 0.828 304.73 BP = 194.62 – 0.319 MPb0l (w,v)C-CH3 + 4.8x10-3 MKb4l

H (w,v)C-CH3 
– 9.0x10-2 PVb1 (w,v) (24) 

 Stochastic Bond-based 
Bilinear Indices 3 96.15 98.21 0.901 256.21 Bp = 120.53 + 0.010 MVb7 (w,v) – 103.20 MPb5

H (w,v)  
         + 438.08 PKb4

H (w,v) (25) 

 NonStochastic Atom-
based Bilinear Indices 3 96.1 97.7 1.021 198.64  

 Stochastic Atom-based 
Bilinear indices 3 92.7 96.23 1.314 118.18  

21 

 Best Models From Literature by Using 2D and 3D MDs 
 getaway + whim + top. 3 98.12 98.78 0.744  2χ 2 χ  HATS6(p) 
 getaway 3 97.10 98.32 0.897  HATS2(v) R4(u) R6(v) 
 getaway + whim + top. 2 96.62 97.58 1.013  2χ  HATS6(p) 
 topological 3  95.84 1.394  S3W S4W SJ 
 topological 2  94.78 1.508  S3W S4W 
 getaway 2 84.86 89.62 2.098  HATS2(m) R+

4(u) 
 topological 2  81.36 2.810  WW x1 
 topological 1  78.85 2.90  Z 
 getaway + whim + top. 1 66.47 74.64 3.175  HATS2(m) 
 topological 1  67.77 3.630  2χ W 

56 

 2D Bond- and Atom-based bilinear indices 
Motor Octane 
Number (MON) 

NonStochastic Bond-
based Bilinear Indices 3 99.03 99.43 3.224 756.64 MON = -514.96 – 6.88x10-9 MVb15

H (w,v)  
             +1.80x10-6 PKb14

H (w,v) - 5.10x10-2 VKb1l
H (w,v)C-CH3 

(26) 

 Stochastic Bond-based 
Bilinear Indices 3 99.01 99.40 3.251 721.86 MON = - 94.87 – 5.846 MVb3l

H (w,v)C-CH3  
              - 5.121 MVb4l

H (w,v)C-CH3 + 670.561 PKb10l
H (w,v)C-CH3 

(27) 

 NonStochastic Atom-
based Bilinear Indices 3 98.4 99.2 3.327 511.07  

 Stochastic Atom-based 
Bilinear indices 3 97.6 98.6 4.319 301.58  

21 

 Best Models From Literature by Using 2D and 3D MDs 
 getaway + whim + top. 3 98.58 99.23 2.439  vID

M Ts HATS1(m) 
 getaway 3 97.42 98.62 3.259  HATS4(u) HATS7(v) R7(p) 
 topological 3  98.05 3.855  Sχ1W χ7W χ3W 
 getaway + whim + top. 2 96.77 97.68 4.053  Ts H4(e) 
 getaway 2 91.28 95.78 5.466  HATS7(m) R4(u) 
 topological 2  95.64 5.533  Sχ1W Sχ3W 
 topological 1  95.22 5.589  Χ7W 
 getaway + whim + top. 1 90.83 92.40 7.069  Ts 
 topological 1  91.97 7.270  IwD 
 getaway 1 85.64 88.98 8.515  REIG 

56 
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Table 2. Cont. 
Property Method size Q2

LOO
 R2 s F Equation or Model Descriptors Ref. 

 2D Bond- and Atom-based bilinear indices 
Heat of 
Vaporization (HV) 

NonStochastic Bond-
based Bilinear Indices 3 98.70 99.32 0.043 685.46 HV = 13.88 – 8.0x10-4 MVb1 (w,v) + 2.33x10-2 MVb1l

H (w,v)C-CH3  
        - 1.03x10-3 MVb0l (w,v)C-CH3 

(28) 

 Stochastic Bond-based 
Bilinear Indices 3 98.50 99.07 0.046 497.64 HV = 12.08 – 0.031 MVb0l

H (w,v)C-CH3 - 0.104 MKb1
H (w,v) 

        +1.299 PKb2l
H (w,v)C-CH3 

(29) 

 NonStochastic Atom-
based Bilinear Indices 3 98.4 98.9 0.233 294.01  

 Stochastic Atom-based 
Bilinear indices 3 97.0 98.4 0.279 249.01  

21 

 Best Models From Literature by Using 2D and 3D MDs 
 getaway + whim + top. 3 97.57 98.42 0.281  0 χ 3κ R+

6(u) 
 getaway 3 95.46 97.18 0.375  HATS6(u) R4(u) R+

1(m) 
 getaway + whim + top. 2 95.18 96.53 0.402  2χ   R+

6(u) 
 topological 3  95.65 0.459  χ1W χ2W χ3W 
 getaway 2 93.15 94.87 0.488  HATS4(u) R6(e) 
 topological 2  92.62 0.577  4W 5W 
 topological 1  91.78 0.429  Z 
 getaway + whim + top. 1 80.80 88.61 0.705  2χ 
 getaway 1 79.74 85.70 0.790  R2(m) 
 topological 2  84.27 0.820  WW x1 

56 

 2D Bond- and Atom-based bilinear indices 
Molar Volume 
(MV) 

NonStochastic Bond-
based Bilinear Indices 3 98.60 99.24 0.306 565.03 MV = 214.22 + 2.2x10-3 MVb0l (w,v)C-CH3 – 0.198 MPb2

H (w,v)  
          + 0.257 MKb1

H (w,v) (30) 

 Stochastic Bond-based 
Bilinear Indices 3 97.83 99.01 0.282 434.35 MV = 242.186 – 2.773 PVb2

H (w,v) + 0.018 PVb0l (w,v)C-CH3  

                 + 0.231 VKb1
H (w,v) (31) 

 NonStochastic Atom-
based Bilinear Indices 3 98.2 99.1 0.273 461.48  

 Stochastic Atom-based 
Bilinear indices 3 98.7 99.1 0.264 491.33  

21 

 Best Models From Literature by Using 2D and 3D MDs 
 getaway + whim + top. 3 75.96 92.01 1.825  Ks R+

6(u) RT+(m) 
 getaway 3 69.27 90.33 2.008  HATS6(p) RT+(m) R1(v) 
 topological 3  88.29 2.210  5W 6W 7W 
 getaway + whim + top. 2 54.49 84.96 2.419  vID

M  R+
6(u) 

 getaway 2 45.49 81.79 2.662  R+
6(u) R4(v) 

 getaway + whim + top. 1 32.66 67.61 3.437  R6(v) 
 topological 2  62.76 3.807  3W 4W 
 topological 1  60.85 3.780  7W 

56 
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Table 2. Cont. 
Property Method size Q2

LOO
 R2 s F Equation or Model Descriptors Ref. 

 2D Bond- and Atom-based bilinear indices 
Entropy (S) NonStochastic Bond-

based Bilinear Indices 
3 90.60 95.22 1.387 93.020 S = 112.54 + 5.50x10-6 MVb8l (w,v)C-CH3   

      - 4.26x10-4 MKb6l (w,v)C-CH3  - 4.04x10-8 PKb14 (w,v) (32) 

 Stochastic Bond-based 
Bilinear Indices 

3 89.50 94.53 1.465 80.74 S = 109.0 – 4.30 MKb4
H (w,v)+ 0.184 VKb0(w,v) 

      + 0.128 VKb1l
H (w,v)C-CH3 

(33) 

 NonStochastic Atom-
based Bilinear Indices 

3 88.5 91.1 1.320 180.96  

 Stochastic Atom-based 
Bilinear indices 

3 90.9 95.3 1.08 94.12  
21 

 Best Models From Literature by Using 2D and 3D MDs 
 getaway + whim + top. 3 97.17 97.96 0.711  vID,deg TWC R+

2(p)  
 getaway + whim + top. 2 96.42 97.14 0.814  vID,deg TWC  
 getaway 3 93.45 95.84 1.016  ISH HATS8(m) R3(v) 
 getaway 2 92.19 94.76 1.101  ISH R3(v) 
 getaway + whim + top. 1 89.86 92.51 1.274  R3(v) 
 topological 1  91.10 1.400  χ[1/2] 

 topological 2  81.72 2.060  x1 x2
 

56 

 2D Bond- and Atom-based bilinear indices 
Heat of Formation 
(ΔfH) 

NonStochastic Bond-
based Bilinear Indices 

3 93.40 96.05 0.321 112.63 ΔfH  = - 46.30 – 1.20x10-4 MVb5l
H (w,v)C-CH3  

           - 6.55x10-6 MKb7w,v)+ 1.16x10-9 PVb14l
H (w,v)C-CH3 

(34) 

 Stochastic Bond-based 
Bilinear Indices 

3 91.28 94.51 0.369 80.45 ΔfH = - 123.85 + 7.151 MPb3
H (w,v) - 1.364 MKb1

H (w,v)  
           - 0.053 PVb0l (w,v)C-CH3 

(35) 

 NonStochastic Atom-
based Bilinear Indices 

3 97.3 98.4 0.053 292.84  

 Stochastic Atom-based 
Bilinear indices 

3 96.6 97.61 0.062 632.63  
21 

 Best Models From Literature by Using 2D and 3D MDs 
 getaway + whim + top. 3 95.06 96.60 0.254  HATS5(m) HATS7(m) R4(e) 
 getaway + whim + top. 2 90.96 93.24 0.346  2χ  HATS2(e)  
 getaway  2 90.18 92.87 0.356  HATS7(u) R2(m) 
 getaway + whim + top. 1 87.18 89.34 0.421  HATS2(m)  
 topological 3  87.05 0.492  Ω1 Ω2 Ω3 
 topological 2  86.86 0.478  Ω1 Ω2 
 topological 1  86.68 0.471  1/2χ 
 topological 2  78.70 0.570  WW x1 

56 
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Table 3. Results of Regression-Equations (Tree-Variables) for other Physical Properties of Octanes by Using (both Total and Local) Bond-based 
Bilinear Indices. 

Equations and their Statistical Parameter Propertya 

 size R2 S q2 Scv F Equation 

non-stochastic 3 96.09 0.274 93.87 0.312 114.82 ∆Hc = 1226.40 – 9.578x10-5 MPb7l
H (w,v)C-CH3 – 1.924x10-6 MKb8 (w,v)  

           + 3.232x10-10 PVb15l
H (w,v)C-CH3  ∆Hc 

stochastic 3 94.72 0.319 91.73 0.362 83.77 ∆Hc = 1148.98 + 7.134 MPb3
H (w,v)– 1.367 MKb1

H (w,v)  
           – 0.053 PVb0l (w,v)C-CH3 

non-stochastic 3 96.37 2.986 94.32 3.420 124.03 TSA =1488.29 + 1.258x10-4 MVb4 (w,v - 5.301 MPb0 (w,v)   
           - 0.144 MPb11 (w,v) TSA 

stochastic 3 95.64 3.700 92.50 3.886 102.51 TSA =1475.95 + 10.055 MPb15
H (w,v) – 5.956 MPb0 (w,v)   

           - 0.150 VKb1l (w,v)C-CH3 

non-stochastic 3 99.78 0.002 99.70 0.002 2150.0 AF = 0.470 – 1.548x10-8 PKb10l
H (w,v)C-CH3 + 7.13x10-4 PKb2l (w,v)C-CH3   

          – 4.2x10-5 VKb2 (w,v) AF 
stochastic 3 99.78 0.002 99.68 0.002 2194.5 AF = 1.494 – 3.699x10-2 MKb3

H (w,v)– 1.056x10-2 MVb15
H (w,v)  

         + 5.62x10-4 MKb14l (w,v)C-CH3 

non-stochastic 3 95.28 0.043 99.91 0.048 94.40 R2 = 15.146 – 0.055 MPb0 (w,v) + 1.97x10-3 MKb4
H (w,v)  

        – 7.98x10-3 PVb3
H (w,v) R2 

stochastic 3 98.28 0.017 99.98 0.020 649.55 R2 = 2.490 – 0.002 VKb1l
H (w,v)C-CH3 + 0.353 VKb3l

H (w,v)C-CH3 
        – 0.355 VKb5l

H (w,v)C-CH3 

non-stochastic 3 99.39 0.016 98.78 0.020 709.0 MR = 42.92 – 2.79x10-3 MPb4
H (w,v) + 4.6x10-4 MVb5

H (w,v)  
          + 1.96x10-2 MKb1

H (w,v) MR 
stochastic 3 99.37 0.015 98.68 0.021 692.85 MR = 43.24 – 3.84 x10-3 MVb1

H (w,v) - 0.190 MKb2
H (w,v)  

           + 1.71x10-3 PVb2(w,v) 

non-stochastic 3 96.96 0.010 93.10 0.013 149.24 Log P = 3.843 + 5.03x10-5 VKb3 (w,v) – 1.07x10-3 VKb0l (w,v)C-CH3  
             – 3.80x10-5 VKb3l (w,v)C-CH3 Log P 

stochastic 3 99.85 0.002 99.69 0.003 3174.7 Log P = 3.378 – 2.645x10-3 MVb0l
H (w,v)C-CH3  

              + 9.548x10-6 MVb15l (w,v)C-CH3  + 3.273x10-2 PVb1
H (w,v) 

non-stochastic 3 99.27 0.190 98.90 0.209 639.14 ∆Hv = 121.63 + 9.7x10-3 MPb3l
H (w,v)C-CH3  + 0.024 MKb4

H (w,v) 
                  - 0.106 PVb3

H (w,v) b∆Hv 
stochastic 3 98.44 0.279 97.10 0.345 294.80 ∆Hv = 67.182 + 0.0116 PVb1 (w,v) – 19.848 PKb3

H (w,v)  
                  + 1.337 VKb2

H (w,v) 

non-stochastic 3 99.04 0.003 93.39 0.007 483.30 d = 0.7542 – 2.1x10-5 MVb1 (w,v)+ 1.83x10-4 MVb0l
H (w,v)C-CH3 + 3.495 

MPb15l (w,v)C-CH3 d 
stochastic 3 88.83 0.011 23.98 0.024 37.14 d = 0.7813 + 2.023 MVb2l

H (w,v)C-CH3 – 7.65x10-5 MVb0l (w,v)C-CH3 – 
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9.79x10-4 MKb12l (w,v)C-CH3 

non-stochastic 3 96.45 2.020 94.36 2.311 127.02 CT = -244.458 + 1.076 MKb2
H (w,v) – 1.86x10-3 PKb6(w,v)  - 0.075 VKb0l 

(w,v)C-CH3 
CT 

stochastic 3 89.62 3.457 67.70 5.529 40.29 
CT = 25.818 + 1.369 MVb2

H (w,v) – 0.405 MVb0l
H (w,v)C-CH3 + 3.34x10-2 

MVb5l (w,v)C-CH3 
 

non-stochastic 3 97.07 0.271 94.15 0.347 154.48 CP = -32.742 - 2.53x10-7 MVb8(w,v) + 0.1097 MKb2
H (w,v) - 0.040 VKb0l 

(w,v)C-CH3 CP 
stochastic 3 89.52 0.513 60.00 0.910 39.86 CP = 12.10 - 4.54x10-3 MVb3l (w,v)C-CH3

 + 0.460 PVb5
H (w,v) – 2.43x10-2 

VKb1l (w,v)C-CH3 

non-stochastic 3 81.20 0.405 98.73 0.471 20.16 ∆Hf = 11.423 – 6.71x10-2 PVb1
H (w,v) – 1.803x10-2 PVb2l

H (w,v)C-CH3 + 
1.0x10-3 PVb5l

H (w,v)C-CH3 c∆Hf 
stochastic 3 79.87 0.419 98.67 0.482 18.52 ∆Hf = - 157.35 – 13.598 MPb6l

H (w,v)C-CH3 + 0.535 7 MKb0(w,v)+58.206 
PKb3l

H (w,v)C-CH3 
a∆Hc: combustion enthalpy; TSA: Total Surface Area ;  AF: Pitzer’s Acentric Factor;  R2: the mean radius squared;  MR: Molar Refraction; Log P: octanol-water partition 
coefficient; bΔHv: no standard heat vaporization; d: density; CT: critical temperature;  CP: critical pressure;  c∆Hf : standard enthalpy formation. 
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Table 4. Experimental and Predicted Values of the Boiling Point of 28 Alkyl-Alcohols 1 
R-OH Used in This Study. 2 
Alcohol-R Obsd.a Pred.b ResVC-LOO

c Pred.d ResVC-LOO
e 

(CH3)2CH- 82,3 82.4 -0.15 82.6 -0.47 
CH3CH2CH2- 97,2 98.2 -1.31 98.0 -1.09 
CH3(CH2)3- 117,7 117.5 0.20 117.5 0.25 
CH3CH(CH3)CH2- 107,8 106.0 2.00 107.0 0.88 
CH3CH2C(CH3)2- 102,4 102.1 0.35 102.8 -0.45 
CH3CH2CH2CH(CH3)- 119,3 119.6 -0.33 119.2 0.12 
CH3CH(CH3)CH2CH2- 131,1 130.9 0.17 129.6 1.67 
CH3CH2CH(CH3)CH2- 128,0 129.1 -1.24 128.3 -0.34 
CH3(CH2)4- 137,9 136.9 1.14 138.0 -0.09 
CH3C(CH3)2CH(CH3)- 120,4 119.1 1.86 120.3 0.11 
CH3(CH2)2C(CH3)2- 121,1 121.1 0.03 122.2 -1.32 
(CH3CH2)2C(CH3)- 122,4 123.3 -1.10 122.2 0.29 
CH3CH2C(CH3)2CH2- 136,5 137.2 -0.78 137.4 -1.34 
CH3CH(CH3)CH2CH(CH3)- 131,6 133.0 -1.60 130.6 1.18 
CH3CH(CH3)CH(CH3CH2)- 126,5 127.3 -1.14 127.9 -1.56 
CH3CH(CH3)CH(CH3)CH2- 144,5 144.5 0.04 141.7 3.25 
CH3CH2CH2CH(CH3)CH2- 149,0 148.1 0.93 149.4 -0.46 
CH3(CH2)5- 157,6 156.3 1.52 157.2 0.46 
(CH3CH(CH3))2CH- 138,7 137.0 2.78 137.9 0.96 
CH3CH(CH3)CH2CH(CH3)CH2- 159,0 161.5 -2.81 162.1 -3.61 
(CH3CH2)3C- 142,0 143.6 -2.38 141.8 0.25 
CH3(CH2)6- 176,4 175.6 0.92 176.3 0.15 
(CH3CH2CH2)2(CH3)C- 161,0 161.3 -0.34 161.4 -0.44 
(CH3(CH2)3)(CH3CH2)(CH3)C- 163,0 161.7 1.50 162.2 0.91 
CH3CH(CH3)CH2(CH2)4- 188,0 189.0 -1.32 188.1 -0.07 
CH3(CH2)7- 195,1 195.0 0.17 195.3 -0.33 
CH3(CH2)5C(CH3)2- 178,0 177.7 0.40 177.7 0.39 
(CH3CH2CH2)2(CH3CH2)C- 182,0 181.6 0.64 181.8 0.21 
aExperimental values of boiling point (oC). b,dPredicted values using non-stochastic (Eq. 36) and 3 
stochastic (Eq. 37) bond-based bilinear indices, respectively.  c,eResidual values of LOO cross-validation 4 
process using non-stochastic and stochastic bond-based bilinear indices, correspondingly [ResCV-LOO = 5 
Bp(Obsd.) - Bp(Pred.CV-LOO)]. 6 
 7 
 8 
 9 
 10 
 11 
 12 
 13 
 14 
 15 
 16 
 17 
 18 
 19 
 20 
 21 
 22 
 23 
 24 
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Table 5. Statistical Information for Best Multiple Regression (2, 3 and 4 parameters) Models 25 
Obtained by Using Non-Stochastic and Stochastic Bond-Level Bilinear Indices to describe the Bp 26 
of Alkyl-alcohols. 27 
zise Molecular Descriptors R2 s q2 scv F 

2 MKb2
H(w,v), MKb0 (w,v) 0.994 2.3 0.999 2.5 2024.0 

3 MKb2
H(w,v), MKb0 (w,v), MKb13 (w,v) 0.998 1.4 0.997 1.6 3399.0 

4 MVb1(w,v), MPb2L
H (w,v)E, PKb0

H (w,v), PKb12L(w,v)E 0.999 1.1 0.998 1.3 4174.7 
2 MKeb4

H(w,v), MKeb0 (w,v) 0.995 2.1 0.993 2.3 2308.0 
3 MKeb3

H(w,v), MKeb0 (w,v), MKeb1 (w,v) 0.997 1.6 0.996 1.7 2766.9 
4 MVeb4

H(w,v), MKeb3
H(w,v), MKeb1 (w,v), PVeb0 (w,v) 0.999 1.1 0.998 1.2 4404.8 

 28 
 29 
 30 
 31 
 32 
 33 
 34 
 35 
 36 
 37 
 38 
 39 
 40 
 41 
 42 
 43 
 44 
 45 
 46 
 47 
 48 
 49 
 50 
 51 
 52 
 53 
 54 
 55 
 56 
 57 
 58 
 59 
 60 
 61 
 62 
 63 
 64 
 65 
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Table 6. Statistical Parameters for the Models Describing the Bp of Alkyl-alcohols by 66 
Using Different MDs. 67 
Molecular Descriptors n R2 q2 s sCV F 

Best Models From Literature 
Local spectral moments57 5 0.982 * 4.2 * 23.8 
E-State42 3 0.926 * 5.8 * 204 

2D Bond- and Atom-based TOMOCOMD-CARDD MDs 
Bond-based non-Stocastic Bilinear 

Indices (Eq. 36) 4 0.999 0.998 1.1 1.3 4174.7 

Bond-based Stocastic Bilinear 
Indices (Eq. 37) 4 0.999 0.998 1.1 1.2 4404.8 

Atom-based Linear Indices76 4 0.993 0.990 2.48 2.79 871.96 
Bond-based Quadratic Indices34 3 0.998 0.997 1.46 1.60 3394.6 
 68 
 69 
 70 
 71 
 72 
 73 
 74 
 75 
 76 
 77 
 78 
 79 
 80 
 81 
 82 
 83 
 84 
 85 
 86 
 87 
 88 
 89 
 90 
 91 
 92 
 93 
 94 
 95 
 96 
 97 
 98 
 99 
 100 
 101 
 102 
 103 
 104 
 105 
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Table 7. Chemical structures and numbering of atoms in the 2-furylethylene 106 
compounds used in this study.  107 

O

2

3
4

5
6

7 R3

R2

R1
1

 
no. R1 R2 R3 no. R1 R2 R3 
1 H NO2 COOCH3 18 NO2 H CONHCH(CH3)C2H5 
2 CH3 NO2 COOCH3 19 NO2 H CONHC(CH3)3 
3 Br NO2 COOCH3 20 NO2 H CONHCH2C(CH3)3 
4 I NO2 COOCH3 21 NO2 H COOCH3 
5 COOCH3 NO2 COOCH3 22 NO2 H COOC2H5 
6 NO2 NO2 COOCH3 23 NO2 H COO(CH2)2CH3 
7 NO2 COOC2H5 COOC2H5 24 NO2 H COOCH(CH3)2 
8 NO2 H NO2 25 NO2 H COO(CH2)3CH3 
9 H H NO2 26 NO2 H COOCH2CH(CH3)2 
10 NO2 H CONH2 27 NO2 H COOCH(CH3)C2H5 
11 NO2 H CONHCH3 28 NO2 H COOC(CH3)3 
12 NO2 H CON(CH3)2 29 NO2 H COO(CH2)4CH3 
13 NO2 H CONHC2H5 30 NO2 H Br 
14 NO2 H CONH(CH2)2CH3 31 NO2 H CN 
15 NO2 H CONHCH(CH3)2 32 NO2 H OCH3 
16 NO2 H CONH(CH2)3CH3 33 NO2 H H 
17 NO2 H CONHCH2CH(CH3)2 34 NO2 CN COOCH3 

Novel R1,R2-Substituted 2-Furylethylenes (R3 = NO2) used as external test set to assess the predictive 
power of the classification model for antibacterial activity 

1 Br Br NO2 6 H I NO2 
2 I I NO2 7 H CH3 NO2 
3 Br H NO2 8 Br CH3 NO2 
4 H Br NO2 9 I CH3 NO2 
5 I H NO2     

 108 
 109 
 110 
 111 

 112 
 113 
 114 
 115 
 116 
 117 
 118 
 119 
 120 
 121 
 122 
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Table 8. Experimental and calculated values of the specific rate constant for the 123 
reaction of nucleophilic addition of thiols (log k) to the exocyclic double bond of the 124 
studied 2-furylethylenes.  125 

no. Obsd.a Pred.b ResVC-LOO
c Pred.d ResVC-LOO

e 
1 6.591 6.853 -0.262 6.474 0.117 
2 6.518 6.085 0.433 6.612 -0.094 
3 6.914 7.110 -0.196 6.829 0.085 
4 6.982 6.817 0.165 6.966 0.016 
5 7.176 7.087 0.089 7.135 0.041 
6 7.602 7.874 -0.272 7.807 -0.205 
7 5.255 5.352 -0.097 5.311 -0.056 
8 6.763 6.545 0.218 6.821 -0.058 
9 5.623 5.535 0.088 5.483 0.140 

10 3.813 3.933 -0.120 4.137 -0.324 
11 3.840 3.947 -0.107 3.771 0.069 
12 3.874 3.489 0.385 3.731 0.143 
13 3.825 3.686 0.139 3.512 0.313 
14 3.623 3.677 -0.054 3.623 0.000 
15 3.751 3.718 0.033 3.693 0.058 
16 3.784 3.725 0.059 3.628 0.156 
17 3.697 3.668 0.029 3.711 -0.014 
18 3.705 3.709 -0.004 3.763 -0.058 
19 3.697 3.845 -0.148 3.895 -0.198 
20 3.650 3.660 -0.010 3.777 -0.127 
21 4.000 4.153 -0.153 4.191 -0.191 
22 3.920 3.828 0.092 3.592 0.328 
23 3.790 3.659 0.131 3.612 0.178 
24 3.763 3.748 0.015 3.686 0.077 
25 3.623 3.653 -0.030 3.587 0.036 
26 3.650 3.485 0.165 3.648 0.002 
27 3.592 3.576 0.016 3.726 -0.134 
28 3.584 3.713 -0.129 3.862 -0.278 
29 3.590 3.648 -0.058 3.582 0.008 
30 2.987 2.909 0.078 3.046 -0.059 
31 3.273 3.350 -0.077 3.355 -0.082 
32 2.140 2.599 -0.459 2.371 -0.231 
33 3.553 3.485 0.068 3.496 0.057 
34 5.557 5.581 -0.024 5.272 0.285 

aExperimental values of log k. b,dPredicted values using non-stochastic (Eq. 38) and stochastic (Eq. 39) 126 
bond-based bilinear indices, respectively.  c,eResidual values of LOO cross-validation process using non-127 
stochastic and stochastic bond-based bilinear indices, correspondingly [ResCV-LOO = log k (Obsd.) – log k 128 
(Pred.CV-LOO)]. 129 
 130 
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Table 9. Experimental and calculated values of the partition coefficient n-octanol/water 141 
(log P) for the furylethylenes studied. 142 

no. Obsd.a Pred.b ResVC-LOO
c Pred.d ResVC-LOO

e 
1 1.879 1.811 0.068 1.697 0.182 
2 2.439 2.246 0.193 2.513 -0.074 
3 2.739 2.629 0.110 2.723 0.016 
4 2.999 3.042 -0.043 3.008 -0.009 
5 1.869 1.899 -0.030 1.865 0.004 
6 1.599 1.539 0.060 1.570 0.029 
7 2.504 2.720 -0.216 2.522 -0.018 
8 1.303 1.294 0.009 1.467 -0.164 
9 1.583 1.572 0.011 1.603 -0.020 

10 0.649 0.816 -0.167 0.687 -0.038 
11 0.984 1.023 -0.039 1.128 -0.144 
12 0.819 0.702 0.117 0.755 0.064 
13 1.386 1.402 -0.016 1.354 0.032 
14 1.860 2.013 -0.153 1.888 -0.028 
15 1.803 1.811 -0.008 1.822 -0.019 
16 2.356 2.359 -0.003 2.262 0.094 
17 2.225 2.354 -0.129 2.284 -0.059 
18 2.284 2.429 -0.145 2.440 -0.156 
19 2.333 2.151 0.182 2.261 0.072 
20 2.605 2.506 0.099 2.674 -0.069 
21 1.652 1.684 -0.032 1.821 -0.169 
22 2.098 2.093 0.005 2.123 -0.025 
23 2.673 2.678 -0.005 2.624 0.049 
24 2.641 2.567 0.074 2.522 0.119 
25 2.827 3.036 -0.209 2.928 -0.101 
26 3.135 3.011 0.124 2.994 0.141 
27 3.091 3.166 -0.075 3.123 -0.032 
28 3.060 3.005 0.055 2.910 0.150 
29 3.404 3.296 0.108 3.495 -0.091 
30 2.447 2.397 0.050 2.437 0.010 
31 1.050 1.330 -0.280 1.167 -0.117 
32 1.591 1.613 -0.022 1.459 0.132 
33 1.611 1.311 0.300 1.456 0.155 
34 1.488 1.480 0.008 1.402 0.086 

aExperimental values of log P. b,dPredicted values using non-stochastic (Eq. 40) and stochastic (Eq. 41) 143 
bond-based bilinear indices, respectively.  c,eResidual values of LOO cross-validation process using non-144 
stochastic and stochastic bond-based bilinear indices, correspondingly [ResCV-LOO = log P (Obsd.) – log P 145 
(Pred.CV-LOO)]. 146 
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Table 10. Statistical parameters of the QSPR/QSAR models obtained by using different 159 
MDs in order to model the properties of molecules included in the CASE 3. 160 
Indexa n R2 s q2 sCV-LOO F 

Reactivity (log k) of 34 2-Furylethylenes 

2D Bond- and Atom-based TOMOCOMD-CARDD MDs 

Bond-based NS BI(Eq.38) 7 0.985 0.198 0.964 0.270 242.04 

Bond-based SS BI(Eq.39) 7 0.987 0.178 0.971 0.240 293.74 

Atom-based NS QI33 7 0.968 0.285 0.922 0.298 115.14 
Bond-based NS QI34 7 0.967 0.292 0.940 0.345 108.79 
Bond-based SS QI34 7 0.975 0.257 0.958 0.288 142.07 
Atom-based NS LI76 6 0.973 0.26 0.948 0.33 161.22 

Best Models From Literature by Using 2D and 3D MDs 
Conn. Indices57 7 0.821 0.681 * * 17.1 

Global spectral moments57 7 0.843 0.655 * * 18.8 

Local spectral moments57 7 0.964 0.320 * * 70.4 
Quantum chemical 
descriptors57 7 0.968 0.288 * * 112.2 

Partition Coefficient n-Octanol/Water (log P) of 34 2-Furylethylenes 
2D Bond- and Atom-based TOMOCOMD-CARDD MDs 

Bond-based NS BI(Eq.40) 7 0.970 0.140 0.910 0.216 119.14 

Bond-based SS BI(Eq.41) 7 0.981 0.110 0.949 0.162 197.61 

Atom-based NS QI33 7 0.969 0.142 0.951 0.156 116.76 

Atom-based NS LI76 7 0.968 0.143 0.938 0.176 113.38 

Best Models From Literature by Using 2D and 3D MDs 

Vertex and Edge Conn. 
Indices58 

7 0.939 0.199 * 0.247 56.9 

Topographic descriptors58 7 0.964 0.155 * 0.176 84.6 

Quantum chemical 
descriptors58 

used the 
Rogers and 
Cammarata 
approach  

0.875 0.319 * 0.370 45.5 

Classification of 34 2-Furylethylene Derivatives as Antibacterial 

index n λ D2 Accuracy 

(Training) 

Accuracy 

(Test) 

F 

2D Bond- and Atom-based TOMOCOMD-CARDD MDs 

Bond-based NS BI(Eq.42) 3 0.26 11.05 97.1 100% 28.42 

Bond-based SS BI(Eq.43) 3 0.27 10.59 94.1 100% 27.25 

Atom-based NS LI76 3 0.30 9.44 94.12% 100% 22.9 

Atom-based NS QI33 5 0.26 11.78 97.1% 100% 15.98 

Best Models From Literature by Using 2D and 3D MDs 

Vertex and Edge Conn. 
Indices58 

5 0.43 5.7 91.2% 100% 7.7 

Topographic descriptors58 5 0.38 6.7 94.1% 100% 9.1 
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Quantum chemical 
descriptors58 

5 0.44 5.2 88.2% 100% 7.1 
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Table 11. Classification of 2-furylethylene derivatives as antibacterial according to the 209 
two best(3-fold) obtained models with our MDs. 210 

non-stochastic (Eq.) 
bond-based bilinear indice  

Stochastic (Eq.) 
bond-based bilinear indice Compd. Obsd.  

Class. Prob. Class. Prob. 

Learning Group 
1 + + 99.98 + 99.99 
2 + + 99.98 + 99.55 
3 + + 99.99 + 99.95 
4 + + 99.99 + 99.64 
5 + + 99.87 + 99.99 
6 + + 99.97 + 99.95 
7 + + 99.59 + 99.57 
8 + + 89.31 + 88.58 
9 + + 91.91 + 98.05 
10 + + 93.07 + 66.53 
11 + + 86.35 + 85.23 
12 + + 96.73 + 99.93 
13 + + 59.50 + 59.53 
14 - - 3.06 - 0.64 
15 - - 3.41 - 1.16 
16 - - 0.99 - 0.22 
17 - - 0.12 - 0.05 
18 - - 0.08 - 0.09 
19 - - 0.02 - 0.05 
20 - - 0.00 - 0.01 
21 - + 87.20 + 84.53 
22 - - 44.36 - 32.10 
23 - - 1.00 - 0.20 
24 - - 0.64 - 0.29 
25 - - 0.23 - 0.06 
26 - - 0.02 - 0.01 
27 - - 0.01 - 0.02 
28 - - 0.00 - 0.01 
29 - - 0.14 - 0.02 
30 - - 0.04 - 9.91 
31 - - 0.26 - 0.83 
32 - - 17.93 + 82.82 
33 - - 0.03 - 0.10 
34 + + 96.85 + 92.09 

Prediction group 
1 + + 80.08 + 98.33 
2 + + 77.39 + 86.38 
3 + + 97.69 + 96.62 
4 + + 64.12 + 99.96 
5 + + 98.12 + 89.52 
6 + + 56.14 + 99.99 
7 + + 100.00 + 98.41 
8 + + 100.00 + 96.38 
9 + + 100.00 + 83.51 
 211 
 212 
 213 
 214 
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 231 
Figure 1. Linear correlations of observed versus calculated boiling point according to 232 
the model obtained from non-stochastic bond-level bilinear indices (Eq. 36). 233 
 234 
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Figure 2. Linear correlations of observed versus calculated boiling point according to 256 
the model obtained from stochastic bond-level bilinear indices (Eq. 37). 257 
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